Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydrodynamics and Transport for Water Quality Modeling

(University of Georgia, Athens, USA), (US Army Engineers, Vicksburg, Mississippi, USA)
  • Formāts: 816 pages
  • Izdošanas datums: 04-May-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351439879
  • Formāts - EPUB+DRM
  • Cena: 169,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 816 pages
  • Izdošanas datums: 04-May-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351439879

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Provides an overview of the basic hydraulic principles for application in surface water quality modeling. The book is intended to support instruction in environmental hydraulics, environmental fate and transport in surface waters, and water quality modeling. Part one introduces the basic principles of momentum, mass, and heat transport, and the remaining three parts concentrate on the theory and practice for streams, rivers, lakes, reservoirs, estuaries and coastal areas. Examples and study problems are featured at the end of each chapter. Annotation c. by Book News, Inc., Portland, Or.

Hydrodynamics and Transport for Water Quality Modeling presents a complete overview of current methods used to describe or predict transport in aquatic systems, with special emphasis on water quality modeling. The book features detailed descriptions of each method, supported by sample applications and case studies drawn from the authors' years of experience in the field. Each chapter examines a variety of modeling approaches, from simple to complex. This unique text/reference offers a wealth of information previously unavailable from a single source.

The book begins with an overview of basic principles, and an introduction to the measurement and analysis of flow. The following section focuses on rivers and streams, including model complexity and data requirements, methods for estimating mixing, hydrologic routing methods, and unsteady flow modeling. The third section considers lakes and reservoirs, and discusses stratification and temperature modeling, mixing methods, reservoir routing and water balances, and dynamic modeling using one-, two-, and three-dimensional models. The book concludes with a section on estuaries, containing topics such as origins and classification, tides, mixing methods, tidally averaged estuary models, and dynamic modeling. Over 250 figures support the text.

This is a valuable guide for students and practicing modelers who do not have extensive backgrounds in fluid dynamics.
Part I Fundamentals 7(192)
1 Fundamental Relationships for Flow and Transport
7(86)
I. Mechanistic Versus Empirical Modeling
7(1)
II. General Principles
8(5)
A. Laws of Conservation
8(1)
B. Extrinsic Versus Intrinsic Properties
9(1)
C. Net Accumulation: Application of the Laws of Conservation
10(2)
D. Control Volumes
12(1)
III. Physical Properties of Water
13(10)
A. Density and Specific Weight
13(2)
B. Compressibility
15(1)
C. Newtonian Fluids and Molecular Viscosity
16(3)
D. Molecular Diffusivity
19(4)
IV. Instantaneous Equations for Fluid Flow and Transport
23(7)
A. Fundamental Form of the Conservation Equations
23(4)
B. Instantaneous Equation for Continuity of Water
27(1)
C. Instantaneous Equations for the Conservation of Momentum
28(1)
D. Instantaneous Equations for the Conservation of Constituent Mass or Thermal Energy
29(1)
V. Reynolds Time-Averaged Mean Flow and Transport Equations
30(14)
A. Turbulent Motion
31(2)
B. Statistical Relationships
33(5)
C. Turbulence Closure
38(6)
VI. Model Complexity: Selection and Development
44(30)
A. Model Resolution
47(2)
1. Scales of Interest
49(4)
2. Time Variation
53(2)
3. Spatial Dimensions for Solving the Governing Equations
55(1)
4. Methods to Simulate the Water Surface
56(2)
5. Turbulence Parameterization
58(2)
6. Forcing Functions or Sources and Sinks
60(1)
a. Water Mass
60(1)
b. Momentum
61(1)
c. Constituent Mass
62(4)
B. Solution Techniques
66(1)
1. Analytical Solutions
67(1)
2. Numerical Solution Techniques
67(7)
VII. Data Requirements
74(15)
A. Boundary Conditions
74(1)
B. Initial Conditions
75(2)
C. Data for Model Application and Evaluation
77(3)
1. Statistical Tests of Paired Observations and Simulations
80(7)
2. Sensitivity Analysis
87(1)
3. Error Analysis
88(1)
D. Data for Evaluation of Environmental Control
88(1)
VIII. Definitions
89(1)
IX. Dimensionless Numbers
90(3)
2 Measurements and Analysis of Flow
93(106)
I. Introduction
93(1)
II. Measurement of Velocity and Flow
94(15)
A. Float Methods
94(3)
B. Current Meters
97(1)
1. Mechanical Current Meters
98(2)
2. Acoustic Current Measurement
100(3)
3. Electromagnetic Current Measurement
103(2)
4. Deployment of Current Meters
105(2)
C. Flow Measurements at Control Structures
107(2)
D. Remote Sensing
109(1)
III. Measurement of Stage
109(2)
IV. Computation of Discharge
111(3)
V. Tracer Studies
114(19)
A. Measurement of Fluorescent Dyes
115(3)
B. Properties of Fluorescent Dyes
118(1)
1. Temperature Effects
118(1)
2. Background Interference
119(1)
3. Sorption
119(1)
4. pH Effects
120(1)
5. Photodegradation
120(1)
6. Chemical Reactions and Quenching
120(1)
7. Density Effects
121(1)
8. Toxicity
121(1)
C. Types of Dye Studies
121(1)
1. Instantaneous Release
121(3)
2. Continuous Release
124(7)
D. Planning Dye Studies
131(1)
1. Estimating Mean Velocities
131(1)
2. Mixing Considerations
131(1)
3. Estimating the Quantity of Dye Releases
132(1)
4. Determining Locations of Sampling Stations
132(1)
VI. Estimating Design Flows
133(18)
A. Design Conditions for Dynamic Flows
135(1)
B. Design Conditions for Steady Flows
135(3)
1. Extreme-Value-Based Design Flows
138(1)
a. Distribution-Free Method
138(5)
b. Known or Estimated Probability Distribution
143(4)
2. Biologically Based Design Flows
147(4)
References
151(8)
Symbols Used in Part I
159(12)
Problems
171(9)
Appendixes
180(19)
I.A Physical Properties of Water
180(2)
I.B Unit Conversion Factors
182(9)
I.C Values of Frequency Factor K for Use in the Log Pearson Type III Distribution for Low-Flow Analyses
191(1)
I.D Values of Frequency Factor K for Use in the Log Pearson Type III Distribution for High-Flow Analyses
192(1)
I.E Standard Variant Z(u) Associated with Typical Return Intervals
193(6)
Part II Rivers and Streams 199(136)
3 Flow Models for Rivers and Streams
199(22)
I. Introduction
199(1)
II. Flow Model Complexity
200(4)
A. Spatial and Temporal Resolution
201(1)
B. Complexity of Governing Equations
202(2)
III. Data Requirements
204(7)
A. Boundary Conditions
205(1)
B. Channel Geometry
206(3)
C. Bottom Roughness
209(1)
D. Model Calibration and Evaluation
210(1)
IV. Estimating Mixing in Streams and Rivers
211(10)
A. Methods Based on Shear Stresses
213(2)
B. Methods Based on Tracer Studies
215(4)
C. Estimating Mixing Lengths
219(2)
4 Non-Hydraulic Methods for Flow Estimation
221(16)
I. Flow Relationships
221(1)
II. Hydrologic Routing Methods
222(15)
A. Empirical Techniques
222(1)
B. Hydrographic Theory
223(1)
C. Hydrographic Relationships
226(3)
D. Methods Based on Continuity
229(8)
5 Hydraulic Methods for Steady Flows
237(30)
I. Steady, Uniform Flows
237(11)
A. The Chezy Equation
238(1)
B. The Manning Equation
239(7)
C. Simulating Frictional Resistance Using the Manning Equation
246(2)
II. Hydraulic Methods for Steady, Nonuniform Flows
248(19)
A. Bernoulli Energy Equation Modified for Friction Losses
248(1)
B. Classification of Flow Regimes
249(1)
1. Normal and Critical Flow Conditions
249(3)
2. Froude Number
252(1)
3. Hydraulic Jump
253(1)
4. Classification of Water Surface Profiles
254(1)
C. Energy Losses and Momentum Corrections
255(1)
1. Friction Losses in Steady Nonuniform Flow
255(1)
2. Minor Losses
256(1)
3. Kinetic Energy Corrections
257(1)
D. Application of Nonuniform Flow Concepts
258(1)
1. The Step Method
258(3)
2. Iterative Solution
261(6)
6 Hydraulic Methods for Unsteady Flows
267(22)
I. Introduction
267(1)
II. Solution Techniques
268(9)
A. Method of Characteristics
268(1)
B. Finite-Difference Methods
269(5)
C. Finite-Element Methods
274(1)
D. Numerical Properties
274(2)
E. Boundary and Initial Conditions
276(1)
III. Unsteady-Flow Methods
277(1)
IV. Kinematic-Wave Model
278(11)
A. Exact Solution
280(3)
B. Numerical Solution: Backward Finite-Difference Approach
283(6)
7 Solutions of Complete Unsteady Flow Models
289(46)
I. Explicit Solution of a Link-Node Model
289(12)
A. Description of the Method
289(2)
B. Solution Technique
291(2)
C. Example Applications
293(6)
D. Linkage with Water Quality Models
299(2)
II. Implicit Solution Using the Four-Point Method
301(14)
A. Numerical Scheme
301(3)
B. Solution Technique
304(4)
C. Examples of Implicit Models
308(2)
D. Linkage with Water Quality Models
310(5)
References
315(4)
Symbols Used in Part II
319(6)
Problems
325(10)
Part III Lakes and Reservoirs 335(192)
8 Stratification and Heat Transfer in Lakes and Reservoirs
335(50)
I. Introduction to Lakes and Reservoirs
335(1)
II. Origin and Characteristics of Lakes and Reservoirs
336(7)
A. Origin a Lakes
336(1)
B. Size and Number
337(1)
C. Water Use and Reservoir Purpose
338(4)
D. Important Lentic Zones and Shoreline Conditions
342(1)
E. Hydraulic Retention Time
343(1)
III. Stratification in Lakes in Reservoirs
343(6)
A. Stratification Cycle
344(3)
B. Classification of Lakes and Reservoirs Based on Stratification
347(1)
C. Stratification Potential
348(1)
IV. Temperature Simulation
349(30)
A. Full Heat Balance
350(1)
1. Short-Wave Radiation
350(10)
2. Long-Wave Radiation
360(1)
3. Back Radiation from Lakes and Reservoirs
361(1)
4. Evaporation
362(3)
5. Conduction and Convection
365(2)
B. Beer's Law and the Solar Radiation Penetration
367(3)
C. Equilibrium Temperature Method
370(2)
1. Use of Equilibrium Temperature to Solve for the Heat Flux
372(2)
2. Coefficient of Heat Exchange
374(2)
3. Other Methods
376(1)
D. Data Requirements
377(2)
V. Ice Formation and Cover
379(6)
A. Ice Formation
381(1)
B. Light Penetration Through Ice and Snow
381(1)
C. Thickening of the Ice Cover
382(1)
D. Lake Ice Decay
383(2)
9 Mixing in Lakes and Reservoirs
385(46)
I. Introduction
385(2)
II. Inflow Mixing Processes
387(16)
A. Characteristics of Inflow Mixing
388(2)
B. Analysis of Inflows
390(1)
1. Plunge or Separation Point
391(5)
2. Thickness and Width of Overflow
396(3)
3. Underflow Mixing
396(3)
4. Interflows
399(4)
III. Outflow Mixing Processes
403(9)
A. Characteristics of Outflow Mixing Processes
403(1)
B. Analysis of Outflow Processes
404(8)
IV. Mixing by Wind, Waves, Convective Cooling, and Coriolis Forces
412(15)
A. Progressive Surface Waves
413(4)
B. Langmuir Circulation
417(1)
C. Convective Mixing
418(1)
D. Internal Waves, Seiches and Upwelling
418(8)
E. Earth's Rotation--the Coriolis Force
426(1)
V. Reservoir Management and Mixing Processes
427(4)
10 Water Balances and Multidimensional Models
431(96)
I. Introduction
431(1)
II. Water Balance for Lakes and Reservoirs
432(17)
A. Components of the Water Balance
433(1)
1. Storage
433(3)
2. Inflow and Outflow Measurements
436(1)
3. Direct Precipitation onto the Lake Surface
437(1)
4. Evaporation
438(6)
5. Groundwater Seepage and Infiltration
444(2)
B. Reservoir Routing Methods
446(3)
III. Zero-Dimensional or Box Models of Lake and Reservoir Quality
449(4)
IV. One-Dimensional, Longitudinal Models of Lakes and Reservoirs
453(2)
V. One-Dimensional, Vertical Models of Lakes and Reservoirs
455(19)
A. Mixed Layer Models
456(8)
B. Vertical Turbulent Diffusion Models
464(1)
1. Empirical Expressions
464(7)
2. Dye or Tracer Studies to Determine Vertical Mixing
471(3)
VI. Two-Dimensional (Laterally Averaged) Models
474(12)
A. Box Model Approach
475(5)
B. Hydrodynamic and Mass Transport Models
480(6)
VII. Two-Dimensional Depth Averaged Models
486(2)
VIII. Three-Dimensional Models
488(3)
References
491(10)
Symbols Used in Part III
501(6)
Problems
507(20)
Part IV Estuaries 527(254)
11 Introduction to Estuaries
527(16)
I. Introduction
527(1)
II. General Characteristics of Estuaries
527(7)
A. Chemical Characteristics
528(1)
B. Density
529(1)
C. Tides and the Salt-Wedge Estuary
530(4)
III. Classification Schemes
534(9)
A. Geomorphology
534(1)
B. Degree of Stratification
535(8)
12 Factors Affecting Transport and Mixing in Estuaries
543(26)
I. Introduction
543(1)
II. Tides
543(13)
A. Tidal Amplitudes
544(9)
B. Tidal Currents
553(3)
III. The Coriolis Force
556(2)
IV. Freshwater Inflow
558(1)
V. Meteorological Effects
559(2)
VI. Bathymetry
561(1)
VII. Model Complexity
562(7)
A. Spatial and Temporal Resolution
563(1)
1. Spatial Resolution
564(2)
2. Temporal Resolution
566(2)
B. Complexity of Governing Equations
568(1)
13 Turbulent Mixing and Dispersion in Estuaries
569(24)
I. Eddy Viscosity and Eddy Diffusivity
569(6)
A. Formulation of Coefficients
570(2)
B. The Closure Problem
572(1)
1. Zero-Equation Closure
572(1)
2. One-Equation Closure
573(1)
3. Two-Equation Closure
573(1)
4. Turbulent Stress and Flux Equation Closure
574(1)
II. Dispresion in Estuaries
575(1)
III. Estimation of Mixing Terms
576(17)
A. Eddy Viscosity and Eddy Diffusivity
576(10)
B. Dispersion
586(7)
14 Tidally Averaged Estuarine Models
593(50)
I. Introduction
593(6)
II. Fraction of Freshwater Method
599(2)
III. Modified Tidal Prism Method
601(3)
IV. Pritchard's Method
604(5)
V. Lung and O'Connor's Method
609(7)
VI. Computing Tidal Transport from Measured or Predicted Velocities
616(27)
A. Computing Tidally Averaged Advection and Dispersion
616(2)
1. Computing Tidally Averaged Advection
618(1)
2. Computing Tidally Averaged Dispersion
619(9)
3. Numerical Diffusion
628(1)
B. Spatial Averaging of Fine Scale Intratidal Simulations
628(1)
C. The Lagrangian Transport Equation
629(5)
D. Computing the Stokes Drift
634(6)
E. A Final Note on Tidal Averaging
640(3)
15 Dynamic Modeling of Estuaries
643(138)
I. Introduction
643(2)
II. Factors That Distinguish Modeling Approaches
645(23)
A. Forces and Boundary Conditions
646(1)
1. Riverine Boundary Conditions
646(1)
2. Open Water Boundary Conditions
646(1)
3. Forces Due to the Coriolis Effect, Atmospheric Pressure, Barotropic Setup, and Baroclinic Pressure
647(2)
4. Water Surface Conditions
649(1)
5. Bottom Boundary Conditions
650(3)
6. Shoreline Conditions
653(2)
B. Dimensionality
655(1)
C. Grid Structure
655(1)
1. Horizontal Finite Difference Grids
656(1)
a. Rectangular Grids with Fixed-Grid Spacing
656(1)
b. Stretched Rectangular Grids
656(2)
c. Curvilinear Boundary-Fitted Coordinate Systems
658(4)
d. Adaptive Grids
662(1)
2. Vertical Coordinate Systems
663(1)
a. Cartesian Vertical Coordinate
663(1)
b. Streched Grid
664(1)
c. Isopycnic Coordinate System
665(1)
3. Finite Element Grids
666(1)
D. Numerical Solution Scheme
666(2)
III. One-Dimensional Models of Estuaries
668(10)
A. Examples of Available Models
671(1)
1. Branch-Network Flow Model
671(1)
2. CE-QUAL-RIV1
672(1)
3. Dynamic Estuary Model (DEM)
672(1)
4. EXPLORE-1
673(1)
5. MIT Transient Water Quality Network Model
673(1)
B. Case Study
674(4)
IV. Two-Dimensional (Horizontal Plane) Models
678(12)
A. Examples of Available Models
680(1)
1. TABS-MD and RMA2-WES
681(1)
2. WIFM-SAL
682(1)
3. HSCTM-2D
683(1)
4. FESWMS-2DH
683(1)
5. Tidal, Residual, Intertidal Mudflat Model
684(1)
6. SIMSYS2D or SWIFT2D
685(1)
7. CAFEX
686(1)
8. H.S. Chen's Model
687(1)
9. FETRA, Sediment-Contaminant Transport Model
687(1)
10. NELEUS
688(1)
11. SEDZL
688(1)
12. Other Models
689(1)
B. Case Study
689(1)
V. Two-Dimensional (Vertical Plane) Models
690(11)
A. Examples of Available Models
694(1)
1. CE-QUAL-W2
694(1)
2. Blumberg's Model
695(1)
B. Case Study
695(6)
VI. Three-Dimensional Models
701(17)
A. Examples of Available Models
709(1)
1. CH3D/CH3D-WES
709(1)
2. EHSM3D
709(1)
3. John Paul's Hydrodynamic Model
709(1)
4. ECOM-3D/POM
709(1)
5. Model for Estuarine and Coastal Circulation and Assessment (MECCA)
710(1)
6. EFDC/HEM3D
710(1)
7. HOTDIM
711(1)
8. RMA Models
711(1)
9. TEMPEST
711(1)
B. Case Study
711(7)
VII. Coupling Flow and Water Quality Models
718(3)
A. Directly Linked Models
718(1)
B. Indirect Linkage
719(2)
References
721(26)
Symbols Used in Part IV
747(16)
Problems
763(9)
Appendixes
772(9)
IV.A. Node Factors (fi) at the Middle of Each Calendar Year (1990-2029)
772(4)
IV.B. Equilibrium Argument (V(o) + Alpha(o)) for the Greenwich Meridian at the Beginning of Each Calender Year (1990-2029)
776(5)
Index 781
Martin, James L.; McCutcheon, Steven C.