Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries

(United States Bureau of Ocean Energy Management; Catholic University of America)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 17-May-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119371922
  • Formāts - EPUB+DRM
  • Cena: 158,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 17-May-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119371922

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The primary reference for the modeling of hydrodynamics and water quality in rivers, lake, estuaries, coastal waters, and wetlands

This comprehensive text perfectly illustrates the principles, basic processes, mathematical descriptions, case studies, and practical applications associated with surface waters. It focuses on solving practical problems in rivers, lakes, estuaries, coastal waters, and wetlands. Most of the theories and technical approaches presented within have been implemented in mathematical models and applied to solve practical problems. Throughout the book, case studies are presented to demonstrate how the basic theories and technical approaches are implemented into models, and how these models are applied to solve practical environmental/water resources problems. 

This new edition of Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries has been updated with more than 40% new information. It features several new chapters, including one devoted to shallow water processes in wetlands as well as another focused on extreme value theory and environmental risk analysis. It is also supplemented with a new website that provides files needed for sample applications, such as source codes, executable codes, input files, output files, model manuals, reports, technical notes, and utility programs. This new edition of the book:





Includes more than 120 new/updated figures and 450 references Covers state-of-the-art hydrodynamics, sediment transport, toxics fate and transport, and water quality in surface waters Provides essential and updated information on mathematical models Focuses on how to solve practical problems in surface waterspresenting basic theories and technical approaches so that mathematical models can be understood and applied to simulate processes in surface waters

Hailed as a great addition to any university library by the Journal of the American Water Resources Association (July 2009), Hydrodynamics and Water Quality, Second Edition is an essential reference for practicing engineers, scientists, and water resource managers worldwide.

Recenzijas

As scientists specializing in the area of developing and evaluating land surface models for earth system models, we found this comprehensive book extraordinarily refreshing and resourceful.... This textbook by Professor Zhen-Gang Ji is a long overdue and welcome addition to the water resources and water quality modelling and analysis literature. With the updated second edition, we will continue to refer to Zhen-Gang Jis book to better understand details about niche disciplines of the aquatic sciences and transport and fate processes in different types of waterbodies. The second edition of this book will be a welcome addition to university/agency libraries and the personal libraries of ASLO members who are either actively engaged in modeling or describe themselves simply as a scientist/engineer who is not a modeler.
Preface to the Second Edition xvii
Foreword to the First Edition xix
Preface to the First Edition xxi
Acknowledgments for the First Edition xxiii
Abbreviations xxv
1 Introduction 1(10)
1.1 Overview
1(2)
1.2 Understanding Surface Waters
3(2)
1.3 Modeling of Surface Waters
5(3)
1.4 About This Book
8(3)
2 Hydrodynamics 11(62)
2.1 Hydrodynamic Processes
11(12)
2.1.1 Water Density
11(2)
2.1.2 Conservation Laws
13(2)
2.1.2.1 Conservation of Mass
13(1)
2.1.2.2 Conservation of Momentum
14(1)
2.1.3 Advection and Dispersion
15(2)
2.1.4 Mass Balance Equation
17(1)
2.1.5 Atmospheric Forcings
18(4)
2.1.6 Coriolis Force and Geostrophic Flow
22(1)
2.2 Governing Equations
23(15)
2.2.1 Basic Approximations
23(1)
2.2.1.1 Boussinesq Approximation
24(1)
2.2.1.2 Hydrostatic Approximation
24(1)
2.2.1.3 Quasi-3D Approximation
24(1)
2.2.2 Equations in Cartesian Coordinates
24(6)
2.2.2.1 1D Equations
25(1)
2.2.2.2 2D Vertically Averaged Equations
26(1)
2.2.2.3 2D Laterally Averaged Equations
27(1)
2.2.2.4 3D Equations in Sigma Coordinate
28(2)
2.2.3 Vertical Mixing and Turbulence Models
30(2)
2.2.4 Equations in Curvilinear Coordinates
32(4)
2.2.4.1 Curvilinear Coordinates and Model Grid
32(3)
2.2.4.2 3D Equations in Sigma and Curvilinear Coordinates
35(1)
2.2.5 Initial Conditions and Boundary Conditions
36(2)
2.2.5.1 Initial Conditions
36(1)
2.2.5.2 Solid Boundary Conditions
37(1)
2.3 Temperature
38(9)
2.3.1 Heat Flux Components
40(5)
2.3.1.1 Solar Radiation
41(1)
2.3.1.2 Longwave Radiation
42(1)
2.3.1.3 Evaporation and Latent Heat
43(1)
2.3.1.4 Sensible Heat
44(1)
2.3.2 Temperature Formulations
45(2)
2.3.2.1 Basic Equations
45(1)
2.3.2.2 Surface Boundary Condition
46(1)
2.3.2.3 Bed Heat Exchange
46(1)
2.4 Hydrodynamic Modeling
47(26)
2.4.1 Hydrodynamic Parameters and Data Requirements
48(2)
2.4.1.1 Hydrodynamic Parameters
48(1)
2.4.1.2 Data Requirements
48(2)
2.4.2 Case Study I: Lake Okeechobee
50(12)
2.4.2.1 Background
50(2)
2.4.2.2 Data Sources
52(1)
2.4.2.3 Model Setup
53(1)
2.4.2.4 Model Calibration
54(4)
2.4.2.5 Hydrodynamic Processes in the Lake
58(4)
2.4.2.6 Discussions and Conclusions
62(1)
2.4.3 Case Study II: St. Lucie Estuary and Indian River Lagoon
62(11)
2.4.3.1 Background
62(1)
2.4.3.2 Model Setup
63(1)
2.4.3.3 Tidal Elevation and Current in SLE/IRL
64(3)
2.4.3.4 Temperature and Salinity
67(3)
2.4.3.5 Discussions on Hydrodynamic Processes
70(1)
2.4.3.6 Conclusions
71(2)
3 Sediment Transport 73(62)
3.1 Overview
73(4)
3.1.1 Properties of Sediment
74(2)
3.1.2 Problems Associated with Sediment
76(1)
3.2 Sediment Processes
77(8)
3.2.1 Particle Settling
77(2)
3.2.2 Horizontal Transport of Sediment
79(2)
3.2.3 Resuspension and Deposition
81(1)
3.2.4 Equations for Sediment Transport
82(2)
3.2.5 Turbidity and Secchi Depth
84(1)
3.3 Cohesive Sediment
85(9)
3.3.1 Vertical Profiles of Cohesive Sediment Concentrations
87(1)
3.3.2 Flocculation
88(1)
3.3.3 Settling of Cohesive Sediment
89(2)
3.3.4 Deposition of Cohesive Sediment
91(1)
3.3.5 Resuspension of Cohesive Sediment
92(2)
3.4 Noncohesive Sediment
94(4)
3.4.1 Shields Diagram
95(1)
3.4.2 Settling and Equilibrium Concentration
96(1)
3.4.3 Bed Load Transport
97(1)
3.5 Sediment Bed
98(4)
3.5.1 Characteristics of Sediment Bed
99(2)
3.5.2 A Model for Sediment Bed
101(1)
3.6 Wind Waves
102(17)
3.6.1 Wave Processes
102(3)
3.6.2 Wind Wave Characteristics
105(2)
3.6.3 Wind Wave Models
107(1)
3.6.4 Combined Flows of Wind Waves and Currents
108(1)
3.6.5 Impact of Wind Waves on Sediment Transport
109(5)
3.6.6 Case Study: Wind Wave Modeling in Lake Okeechobee
114(5)
3.6.6.1 Background
116(1)
3.6.6.2 Measured Data and Model Setup
116(1)
3.6.6.3 Model Calibration and Verification
117(1)
3.6.6.4 Discussion
118(1)
3.7 Sediment Transport Modeling
119(16)
3.7.1 Sediment Parameters and Data Requirements
120(1)
3.7.2 Case Study I: Lake Okeechobee
121(6)
3.7.2.1 Background
121(1)
3.7.2.2 Model Configuration
122(1)
3.7.2.3 Model Calibration and Verification
123(2)
3.7.2.4 Discussion and Conclusions
125(2)
3.7.3 Case Study II: Blackstone River
127(9)
3.7.3.1 Background
127(2)
3.7.3.2 Data Sources and Model Setup
129(1)
3.7.3.3 Hydrodynamic and Sediment Simulation
130(5)
4 Pathogens and Toxics 135(26)
4.1 Overview
135(1)
4.2 Pathogens
136(4)
4.2.1 Bacteria, Viruses, and Protozoa
137(1)
4.2.2 Pathogen Indicators
138(1)
4.2.3 Processes Affecting Pathogens
139(1)
4.3 Toxic Substances
140(6)
4.3.1 Toxic Organic Chemicals
141(1)
4.3.2 Metals
142(1)
4.3.3 Sorption and Desorption
143(3)
4.4 Fate and Transport Processes
146(4)
4.4.1 Mathematical Formulations
146(2)
4.4.2 Processes Affecting Fate and Decay
148(2)
4.4.2.1 Mineralization and Decomposition
148(1)
4.4.2.2 Hydrolysis
148(1)
4.4.2.3 Photolysis
148(1)
4.4.2.4 Biodegradation
149(1)
4.4.2.5 Volatilization
149(1)
4.4.2.6 pH
150(1)
4.5 Contaminant Modeling
150(11)
4.5.1 Case Study I: St. Lucie Estuary and Indian River Lagoon
151(6)
4.5.1.1 Analysis of Measured Copper Data
152(2)
4.5.1.2 Sediment and Copper Modeling Results
154(2)
4.5.1.3 Summary and Discussion
156(1)
4.5.2 Case Study II: Rockford Lake
157(4)
4.5.2.1 Background
157(1)
4.5.2.2 Data Sources and Model Setup
158(1)
4.5.2.3 Model Results
159(2)
5 Water Quality and Eutrophication 161(112)
5.1 Overview
161(15)
5.1.1 Eutrophication
161(2)
5.1.2 Algae
163(1)
5.1.3 Nutrients
164(5)
5.1.3.1 Nitrogen Cycle
165(1)
5.1.3.2 Phosphorus Cycle
166(2)
5.1.3.3 Limiting Nutrients
168(1)
5.1.4 Dissolved Oxygen
169(1)
5.1.5 Governing Equations for Water Quality Processes
170(6)
5.1.5.1 Hydrodynamic Effects
172(1)
5.1.5.2 Temperature Effects
172(1)
5.1.5.3 Michaelis-Menten Formulation
173(1)
5.1.5.4 State Variables in Water Quality Models
174(2)
5.2 Algae
176(11)
5.2.1 Algal Biomass and Chlorophyll
177(1)
5.2.2 Equations for Algal Processes
178(1)
5.2.3 Algal Growth
179(3)
5.2.3.1 Nutrients for Algal Growth
180(1)
5.2.3.2 Sunlight for Algal Growth and Photosynthesis
181(1)
5.2.4 Algal Reduction
182(2)
5.2.4.1 Basal Metabolism
183(1)
5.2.4.2 Algal Predation
183(1)
5.2.4.3 Algal Settling
184(1)
5.2.5 Silica and Diatom
184(2)
5.2.6 Periphyton
186(1)
5.3 Organic Carbon
187(3)
5.3.1 Decomposition of Organic Carbon
188(1)
5.3.2 Equations for Organic Carbon
188(1)
5.3.3 Heterotrophic Respiration and Dissolution
189(1)
5.4 Phosphorus
190(5)
5.4.1 Equations for Phosphorus State Variables
192(1)
5.4.1.1 Particulate Organic Phosphorus
192(1)
5.4.1.2 Dissolved Organic Phosphorus
193(1)
5.4.1.3 Total Phosphate
193(1)
5.4.2 Phosphorus Processes
193(2)
5.4.2.1 Sorption and Desorption of Phosphate
193(1)
5.4.2.2 Effects of Algae on Phosphorus
194(1)
5.4.2.3 Mineralization and Hydrolysis
195(1)
5.5 Nitrogen
195(8)
5.5.1 Forms of Nitrogen
196(1)
5.5.2 Equations for Nitrogen State Variables
197(3)
5.5.2.1 Particulate Organic Nitrogen
197(1)
5.5.2.2 Dissolved Organic Nitrogen
198(1)
5.5.2.3 Ammonium Nitrogen
198(1)
5.5.2.4 Nitrate Nitrogen
199(1)
5.5.3 Nitrogen Processes
200(3)
5.5.3.1 Effects of Algae
200(1)
5.5.3.2 Mineralization and Hydrolysis
200(1)
5.5.3.3 Nitrification
201(1)
5.5.3.4 Denitrification
202(1)
5.5.3.5 Nitrogen Fixation
202(1)
5.6 Dissolved Oxygen
203(8)
5.6.1 Biochemical Oxygen Demand
204(2)
5.6.2 Processes and Equations of Dissolved Oxygen
206(2)
5.6.3 Effects of Photosynthesis and Respiration
208(1)
5.6.4 Reaeration
208(2)
5.6.5 Chemical Oxygen Demand
210(1)
5.7 Sediment Fluxes
211(16)
5.7.1 Sediment Diagenesis Model
212(3)
5.7.1.1 Three Fluxes of the Sediment Diagenesis Model
213(1)
5.7.1.2 Two-Layer Structure of Benthic Sediment
213(1)
5.7.1.3 Three G Classes of Sediment Organic Matter
214(1)
5.7.1.4 State Variables of the Sediment Diagenesis Model
214(1)
5.7.2 Depositional Fluxes
215(1)
5.7.3 Diagenesis Fluxes
216(1)
5.7.4 Sediment Fluxes
217(8)
5.7.4.1 Basic Equations
217(2)
5.7.4.2 Parameters for Sediment Fluxes
219(3)
5.7.4.3 Ammonium Nitrogen Flux
222(1)
5.7.4.4 Nitrate Nitrogen Flux
222(1)
5.7.4.5 Phosphate Phosphorus Flux
223(1)
5.7.4.6 Chemical Oxygen Demand and Sediment Oxygen Demand
224(1)
5.7.5 Silica
225(1)
5.7.6 Coupling with Sediment Resuspension
226(1)
5.8 Submerged Aquatic Vegetation
227(16)
5.8.1 Introduction
227(2)
5.8.2 Equations for an SAV Model
229(4)
5.8.2.1 Shoots Production and Respiration
230(2)
5.8.2.2 Carbon Transport and Roots Respiration
232(1)
5.8.2.3 Epiphytes Production and Respiration
232(1)
5.8.3 Coupling with the Water Quality Model
233(3)
5.8.3.1 Organic Carbon Coupling
233(1)
5.8.3.2 Dissolved Oxygen Coupling
234(1)
5.8.3.3 Phosphorus Coupling
234(1)
5.8.3.4 Nitrogen Coupling
235(1)
5.8.3.5 Total Suspended Solids Coupling
236(1)
5.8.4 Long-Term Variations of SAV
236(7)
5.8.4.1 Background Information
236(1)
5.8.4.2 SAV Model
237(1)
5.8.4.3 Hydrodynamic and Water Quality Model Results
237(1)
5.8.4.4 Long-Term Variations of SAV and Hurricane Impact
238(4)
5.8.4.5 Discussion and Conclusions
242(1)
5.9 Water Quality Modeling
243(30)
5.9.1 Model Parameters and Data Requirements
244(2)
5.9.1.1 Water Quality Parameters
244(1)
5.9.1.2 Data Requirements
245(1)
5.9.2 Case Study I: Lake Okeechobee
246(12)
5.9.2.1 Background
246(1)
5.9.2.2 Model Setup and Data Sources
247(1)
5.9.2.3 Water Quality Modeling Results
248(4)
5.9.2.4 SAV Modeling Results
252(1)
5.9.2.5 Impact of Hurricane Irene
253(1)
5.9.2.6 Impacts of SAV on Nutrient Concentrations
254(2)
5.9.2.7 Discussions and Summary
256(2)
5.9.3 Case Study II: St. Lucie Estuary and Indian River Lagoon
258(21)
5.9.3.1 Introduction
258(3)
5.9.3.2 Model Setup
261(1)
5.9.3.3 Model Calibration and Verification
261(5)
5.9.3.4 Hydrodynamic and Water Quality Processes
266(4)
5.9.3.5 Conclusions
270(3)
6 External Sources and TMDL 273(12)
6.1 Point Sources and Nonpoint Sources
273(2)
6.2 Atmospheric Deposition
275(2)
6.3 Groundwater
277(2)
6.4 Watershed Processes and TMDL Development
279(6)
6.4.1 Watershed Processes
280(1)
6.4.2 Total Maximum Daily Load
281(4)
7 Mathematical Modeling and Statistical Analyses 285(22)
7.1 Mathematical Models
285(7)
7.1.1 Numerical Models
287(2)
7.1.2 Model Selection
289(2)
7.1.3 Spatial Resolution and Temporal Resolution
291(1)
7.2 Statistical Analyses
292(8)
7.2.1 Statistics for Model Performance Evaluation
292(1)
7.2.2 Correlation and Regression
293(1)
7.2.3 Spectral Analysis
294(2)
7.2.4 Empirical Orthogonal Function
296(2)
7.2.5 EOF Case Study
298(2)
7.3 Model Calibration and Verification
300(7)
7.3.1 Model Calibration
302(3)
7.3.2 Model Verification and Validation
305(1)
7.3.3 Sensitivity Analysis
305(2)
8 Rivers 307(28)
8.1 Characteristics of Rivers
307(3)
8.2 Hydrodynamic Processes in Rivers
310(5)
8.2.1 River Flow and the Manning Equation
310(2)
8.2.2 Advection and Dispersion in Rivers
312(1)
8.2.3 Flow Over Dams
313(2)
8.3 Sediment and Water Quality Processes in Rivers
315(4)
8.3.1 Sediment and Contaminants in Rivers
315(1)
8.3.2 Impacts of River Flow on Water Quality
316(1)
8.3.3 Eutrophication and Periphyton in Rivers
317(1)
8.3.4 Dissolved Oxygen in Rivers
318(1)
8.4 River Modeling
319(16)
8.4.1 Case Study I: Blackstone River
320(9)
8.4.1.1 Modeling Metals in the Blackstone River
320(7)
8.4.1.2 Impacts of Sediment and Metals Sources
327(1)
8.4.1.3 Discussion and Conclusions
327(2)
8.4.2 Case Study II: Susquehanna River
329(6)
8.4.2.1 Background
329(2)
8.4.2.2 Model Application
331(2)
8.4.2.3 Discussions
333(2)
9 Lakes and Reservoirs 335(44)
9.1 Characteristics of Lakes and Reservoirs
335(7)
9.1.1 Key Factors Controlling a Lake
336(1)
9.1.2 Vertical Stratification
336(1)
9.1.3 Biological Zones in Lakes
337(2)
9.1.4 Characteristics of Reservoirs
339(2)
9.1.5 Lake Pollution and Eutrophication
341(1)
9.2 Hydrodynamic Processes in Lakes
342(10)
9.2.1 Inflow, Outflow, and Water Budget
343(2)
9.2.2 Wind Forcing and Vertical Circulations
345(1)
9.2.3 Seasonal Variations of Stratification
346(2)
9.2.4 Gyres
348(1)
9.2.5 Seiches
349(3)
9.3 Sediment and Water Quality Processes in Lakes
352(7)
9.3.1 Sediment Deposition in Reservoirs and Lakes
352(1)
9.3.2 Algae and Nutrient Stratifications
353(2)
9.3.3 Dissolved Oxygen Stratifications
355(2)
9.3.4 Internal Cycling and Limiting Functions in Shallow Lakes
357(2)
9.4 Lake Modeling
359(20)
9.4.1 Case Study I: Lake Tenkiller
359(7)
9.4.1.1 Introduction
359(1)
9.4.1.2 Data Sources and Model Setup
360(1)
9.4.1.3 Hydrodynamic Simulation
361(2)
9.4.1.4 Water Quality Simulation
363(1)
9.4.1.5 Discussion and Conclusions
364(2)
9.4.2 Case Study II: Lake Okeechobee
366(16)
9.4.2.1 Introduction
366(1)
9.4.2.2 Model Setup
367(1)
9.4.2.3 Model Results
367(5)
9.4.2.4 Aquifer Storage and Recovery Application
372(4)
9.4.2.5 Summary
376(3)
10 Estuaries and Coastal Waters 379(42)
10.1 Introduction
379(3)
10.2 Tidal Processes
382(7)
10.2.1 Tides
382(3)
10.2.2 Tidal Currents
385(2)
10.2.3 Harmonic Analysis
387(2)
10.3 Hydrodynamic Processes in Estuaries
389(8)
10.3.1 Salinity
389(1)
10.3.2 Estuarine Circulation
390(1)
10.3.3 Stratifications of Estuaries
391(3)
10.3.3.1 Highly Stratified Estuaries
392(1)
10.3.3.2 Moderately Stratified Estuaries
392(1)
10.3.3.3 Vertically Mixed Estuaries
393(1)
10.3.3.4 An Example of Estuarine Stratifications
393(1)
10.3.4 Flushing Time
394(3)
10.4 Sediment and Water Quality Processes in Estuaries
397(5)
10.4.1 Sediment Transport under Tidal Forcing
397(2)
10.4.2 Flocculation of Cohesive Sediment and Sediment Trapping
399(1)
10.4.3 Eutrophication in Estuaries
400(2)
10.5 Estuarine and Coastal Modeling
402(19)
10.5.1 Open Boundary Conditions
403(3)
10.5.2 Case Study I: Morro Bay
406(8)
10.5.2.1 Introduction
406(1)
10.5.2.2 Field Data Measurements
407(1)
10.5.2.3 Model Setup
408(1)
10.5.2.4 Wetting and Drying Approaches
408(1)
10.5.2.5 Wet Cell Mapping
409(1)
10.5.2.6 Hydrodynamic Processes in Morro Bay
409(5)
10.5.2.7 Summary and Conclusions
414(1)
10.5.3 Case Study II: St. Lucie Estuary and Indian River Lagoon
414(7)
10.5.3.1 Ten-Year Simulations
414(5)
10.5.3.2 Influence of Sea Level Rise on Water Quality
419(2)
11 Wetlands 421(58)
11.1 Characteristics of Wetlands
421(7)
11.1.1 Benefits of Wetlands
422(2)
11.1.2 Unique Characteristics of Wetlands
424(2)
11.1.3 Emergent Aquatic Vegetation
426(2)
11.2 Hydrodynamic Processes in Wetlands
428(11)
11.2.1 Evapotranspiration
430(2)
11.2.2 Water Budget and Hydroperiod of a Wetland
432(3)
11.2.3 Effects of Vegetation on Wetland Flow
435(2)
11.2.4 Groundwater and Surface Water Interactions
437(2)
11.3 Sediment and Water Quality Processes in Wetlands
439(15)
11.3.1 Sediment Deposition
440(2)
11.3.2 Water Quality and Nutrient Removal
442(4)
11.3.3 Phosphorous Cycle and Removal
446(5)
11.3.4 Nitrogen Cycle and Carbon Cycle
451(1)
11.3.5 Oxygen
452(1)
11.3.6 Pathogens and Metals
453(1)
11.4 Constructed Wetlands
454(8)
11.4.1 Introduction
454(2)
11.4.2 Processes in Constructed Wetlands
456(6)
11.5 Wetland Modeling
462(17)
11.5.1 Case Study I: Hydrodynamic Modeling of a Constructed Wetland
463(5)
11.5.1.1 Introduction
463(1)
11.5.1.2 Study Area and Model Setup
464(2)
11.5.1.3 Model Results
466(2)
11.5.1.4 Summary and Conclusions
468(1)
11.5.2 Case Study II: Water Quality Modeling of a Constructed Wetland
468(11)
11.5.2.1 Introduction
469(1)
11.5.2.2 Model Description and Model Setup
469(3)
11.5.2.3 Model-Data Comparison
472(2)
11.5.2.4 Phosphorus Processes in the STA
474(1)
11.5.2.5 TP Removal Efficiency
475(3)
11.5.2.6 Summary and Conclusions
478(1)
12 Risk Analysis 479(52)
12.1 Extreme Value Theory
479(20)
12.1.1 Introduction
479(4)
12.1.1.1 Distribution Patterns
480(1)
12.1.1.2 Climate Change and Extremes
481(1)
12.1.1.3 Methods for Analyzing Extremes
482(1)
12.1.2 Blocks Method
483(5)
12.1.2.1 Basic Concepts
483(2)
12.1.2.2 GEV Family of Functions
485(1)
12.1.2.3 QQ Plot and PP Plot
486(2)
12.1.3 Peaks-Over-Threshold Method
488(5)
12.1.3.1 POT Method and Generalized Pareto Distribution
488(2)
12.1.3.2 Discussions on EVT and Software
490(3)
12.1.4 Case Study: Catastrophic Oil Spills
493(6)
12.1.4.1 Background
493(1)
12.1.4.2 Mathematical Method
494(1)
12.1.4.3 Results
495(3)
12.1.4.4 Discussion
498(1)
12.2 Environmental Risk Analysis
499(32)
12.2.1 Introduction
499(2)
12.2.2 Oil Spill Risk Analysis
501(3)
12.2.3 Trajectory Simulation
504(6)
12.2.3.1 Particle Tracking Method
505(1)
12.2.3.2 Analytical Solutions
506(1)
12.2.3.3 Testing Numerical Methods
507(3)
12.2.4 Conditional Probability and Combined Probability
510(1)
12.2.5 Simulating Oil Spills in the Gulf of Mexico
511(6)
12.2.5.1 Background Information
511(1)
12.2.5.2 Modeled Currents in the Gulf of Mexico
511(1)
12.2.5.3 Modeling Potential Oil Spills in the Gulf of Mexico
512(3)
12.2.5.4 Summary and Conclusions
515(2)
12.2.6 Analyzing Spill Risks in an Estuary
517(10)
12.2.6.1 Introduction
517(1)
12.2.6.2 Study Area
518(2)
12.2.6.3 Model-Simulated Ocean Currents, Ice, and Winds as Inputs to OSRA
520(1)
12.2.6.4 OSRA Model Domain and Trajectory Simulation
521(3)
12.2.6.5 Results and Discussion
524(3)
12.2.7 Deepwater Oil Spill Modeling for Assessing Environmental Impacts
527(12)
12.2.7.1 Introduction
527(1)
12.2.7.2 The CDOG Model
528(1)
12.2.7.3 Modeling of Deep Water Spills
528(2)
12.2.7.4 Summary and Conclusions
530(1)
A Environmental Fluid Dynamics Code 531(4)
A.1 Overview
531(1)
A.2 Hydrodynamics
531(1)
A.3 Sediment Transport
532(1)
A.4 Toxic Chemical Transport and Fate
532(1)
A.5 Water Quality and Eutrophication
532(1)
A.6 Numerical Schemes
533(1)
A.7 Documentation and Application Aids
533(2)
B Conversion Factors 535(2)
C Contents of Electronic Files 537(2)
C.1 Channel Model
537(1)
C.2 Blackstone River Model
537(1)
C.3 St. Lucie Estuary and Indian River Lagoon Model
537(1)
C.4 Lake Okeechobee Environmental Model
538(1)
C.5 Documentation and Utility Programs
538(1)
D Introduction to EFDC_Explorer 539(6)
D.1 Capabilities
539(1)
D.2 New Features and Improvements
539(6)
D.2.1 Sigma Zed Layering
539(1)
D.2.2 Internal Wind-Wave Generation
540(1)
D.2.3 Ice Submodel
541(1)
D.2.4 Open Multiprocessing and Dynamic Memory Allocation
541(4)
References 545(32)
Index 577
Zhen-Gang (Jeff) Ji, PhD, DES, PE, is an oceanographer with the United States Bureau of Ocean Energy Management and is also an adjunct professor at the Catholic University of America. He has more than 20 years of professional experience in surface water modeling and model development. His expertise includes hydrodynamics, wind wave, eutrophication, toxic process, and sediment transport.