Preface to the Second Edition |
|
xvii | |
Foreword to the First Edition |
|
xix | |
Preface to the First Edition |
|
xxi | |
Acknowledgments for the First Edition |
|
xxiii | |
Abbreviations |
|
xxv | |
1 Introduction |
|
1 | (10) |
|
|
1 | (2) |
|
1.2 Understanding Surface Waters |
|
|
3 | (2) |
|
1.3 Modeling of Surface Waters |
|
|
5 | (3) |
|
|
8 | (3) |
2 Hydrodynamics |
|
11 | (62) |
|
2.1 Hydrodynamic Processes |
|
|
11 | (12) |
|
|
11 | (2) |
|
|
13 | (2) |
|
2.1.2.1 Conservation of Mass |
|
|
13 | (1) |
|
2.1.2.2 Conservation of Momentum |
|
|
14 | (1) |
|
2.1.3 Advection and Dispersion |
|
|
15 | (2) |
|
2.1.4 Mass Balance Equation |
|
|
17 | (1) |
|
2.1.5 Atmospheric Forcings |
|
|
18 | (4) |
|
2.1.6 Coriolis Force and Geostrophic Flow |
|
|
22 | (1) |
|
|
23 | (15) |
|
2.2.1 Basic Approximations |
|
|
23 | (1) |
|
2.2.1.1 Boussinesq Approximation |
|
|
24 | (1) |
|
2.2.1.2 Hydrostatic Approximation |
|
|
24 | (1) |
|
2.2.1.3 Quasi-3D Approximation |
|
|
24 | (1) |
|
2.2.2 Equations in Cartesian Coordinates |
|
|
24 | (6) |
|
|
25 | (1) |
|
2.2.2.2 2D Vertically Averaged Equations |
|
|
26 | (1) |
|
2.2.2.3 2D Laterally Averaged Equations |
|
|
27 | (1) |
|
2.2.2.4 3D Equations in Sigma Coordinate |
|
|
28 | (2) |
|
2.2.3 Vertical Mixing and Turbulence Models |
|
|
30 | (2) |
|
2.2.4 Equations in Curvilinear Coordinates |
|
|
32 | (4) |
|
2.2.4.1 Curvilinear Coordinates and Model Grid |
|
|
32 | (3) |
|
2.2.4.2 3D Equations in Sigma and Curvilinear Coordinates |
|
|
35 | (1) |
|
2.2.5 Initial Conditions and Boundary Conditions |
|
|
36 | (2) |
|
2.2.5.1 Initial Conditions |
|
|
36 | (1) |
|
2.2.5.2 Solid Boundary Conditions |
|
|
37 | (1) |
|
|
38 | (9) |
|
2.3.1 Heat Flux Components |
|
|
40 | (5) |
|
|
41 | (1) |
|
2.3.1.2 Longwave Radiation |
|
|
42 | (1) |
|
2.3.1.3 Evaporation and Latent Heat |
|
|
43 | (1) |
|
|
44 | (1) |
|
2.3.2 Temperature Formulations |
|
|
45 | (2) |
|
|
45 | (1) |
|
2.3.2.2 Surface Boundary Condition |
|
|
46 | (1) |
|
2.3.2.3 Bed Heat Exchange |
|
|
46 | (1) |
|
2.4 Hydrodynamic Modeling |
|
|
47 | (26) |
|
2.4.1 Hydrodynamic Parameters and Data Requirements |
|
|
48 | (2) |
|
2.4.1.1 Hydrodynamic Parameters |
|
|
48 | (1) |
|
2.4.1.2 Data Requirements |
|
|
48 | (2) |
|
2.4.2 Case Study I: Lake Okeechobee |
|
|
50 | (12) |
|
|
50 | (2) |
|
|
52 | (1) |
|
|
53 | (1) |
|
2.4.2.4 Model Calibration |
|
|
54 | (4) |
|
2.4.2.5 Hydrodynamic Processes in the Lake |
|
|
58 | (4) |
|
2.4.2.6 Discussions and Conclusions |
|
|
62 | (1) |
|
2.4.3 Case Study II: St. Lucie Estuary and Indian River Lagoon |
|
|
62 | (11) |
|
|
62 | (1) |
|
|
63 | (1) |
|
2.4.3.3 Tidal Elevation and Current in SLE/IRL |
|
|
64 | (3) |
|
2.4.3.4 Temperature and Salinity |
|
|
67 | (3) |
|
2.4.3.5 Discussions on Hydrodynamic Processes |
|
|
70 | (1) |
|
|
71 | (2) |
3 Sediment Transport |
|
73 | (62) |
|
|
73 | (4) |
|
3.1.1 Properties of Sediment |
|
|
74 | (2) |
|
3.1.2 Problems Associated with Sediment |
|
|
76 | (1) |
|
|
77 | (8) |
|
|
77 | (2) |
|
3.2.2 Horizontal Transport of Sediment |
|
|
79 | (2) |
|
3.2.3 Resuspension and Deposition |
|
|
81 | (1) |
|
3.2.4 Equations for Sediment Transport |
|
|
82 | (2) |
|
3.2.5 Turbidity and Secchi Depth |
|
|
84 | (1) |
|
|
85 | (9) |
|
3.3.1 Vertical Profiles of Cohesive Sediment Concentrations |
|
|
87 | (1) |
|
|
88 | (1) |
|
3.3.3 Settling of Cohesive Sediment |
|
|
89 | (2) |
|
3.3.4 Deposition of Cohesive Sediment |
|
|
91 | (1) |
|
3.3.5 Resuspension of Cohesive Sediment |
|
|
92 | (2) |
|
|
94 | (4) |
|
|
95 | (1) |
|
3.4.2 Settling and Equilibrium Concentration |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (4) |
|
3.5.1 Characteristics of Sediment Bed |
|
|
99 | (2) |
|
3.5.2 A Model for Sediment Bed |
|
|
101 | (1) |
|
|
102 | (17) |
|
|
102 | (3) |
|
3.6.2 Wind Wave Characteristics |
|
|
105 | (2) |
|
|
107 | (1) |
|
3.6.4 Combined Flows of Wind Waves and Currents |
|
|
108 | (1) |
|
3.6.5 Impact of Wind Waves on Sediment Transport |
|
|
109 | (5) |
|
3.6.6 Case Study: Wind Wave Modeling in Lake Okeechobee |
|
|
114 | (5) |
|
|
116 | (1) |
|
3.6.6.2 Measured Data and Model Setup |
|
|
116 | (1) |
|
3.6.6.3 Model Calibration and Verification |
|
|
117 | (1) |
|
|
118 | (1) |
|
3.7 Sediment Transport Modeling |
|
|
119 | (16) |
|
3.7.1 Sediment Parameters and Data Requirements |
|
|
120 | (1) |
|
3.7.2 Case Study I: Lake Okeechobee |
|
|
121 | (6) |
|
|
121 | (1) |
|
3.7.2.2 Model Configuration |
|
|
122 | (1) |
|
3.7.2.3 Model Calibration and Verification |
|
|
123 | (2) |
|
3.7.2.4 Discussion and Conclusions |
|
|
125 | (2) |
|
3.7.3 Case Study II: Blackstone River |
|
|
127 | (9) |
|
|
127 | (2) |
|
3.7.3.2 Data Sources and Model Setup |
|
|
129 | (1) |
|
3.7.3.3 Hydrodynamic and Sediment Simulation |
|
|
130 | (5) |
4 Pathogens and Toxics |
|
135 | (26) |
|
|
135 | (1) |
|
|
136 | (4) |
|
4.2.1 Bacteria, Viruses, and Protozoa |
|
|
137 | (1) |
|
4.2.2 Pathogen Indicators |
|
|
138 | (1) |
|
4.2.3 Processes Affecting Pathogens |
|
|
139 | (1) |
|
|
140 | (6) |
|
4.3.1 Toxic Organic Chemicals |
|
|
141 | (1) |
|
|
142 | (1) |
|
4.3.3 Sorption and Desorption |
|
|
143 | (3) |
|
4.4 Fate and Transport Processes |
|
|
146 | (4) |
|
4.4.1 Mathematical Formulations |
|
|
146 | (2) |
|
4.4.2 Processes Affecting Fate and Decay |
|
|
148 | (2) |
|
4.4.2.1 Mineralization and Decomposition |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (11) |
|
4.5.1 Case Study I: St. Lucie Estuary and Indian River Lagoon |
|
|
151 | (6) |
|
4.5.1.1 Analysis of Measured Copper Data |
|
|
152 | (2) |
|
4.5.1.2 Sediment and Copper Modeling Results |
|
|
154 | (2) |
|
4.5.1.3 Summary and Discussion |
|
|
156 | (1) |
|
4.5.2 Case Study II: Rockford Lake |
|
|
157 | (4) |
|
|
157 | (1) |
|
4.5.2.2 Data Sources and Model Setup |
|
|
158 | (1) |
|
|
159 | (2) |
5 Water Quality and Eutrophication |
|
161 | (112) |
|
|
161 | (15) |
|
|
161 | (2) |
|
|
163 | (1) |
|
|
164 | (5) |
|
|
165 | (1) |
|
|
166 | (2) |
|
5.1.3.3 Limiting Nutrients |
|
|
168 | (1) |
|
|
169 | (1) |
|
5.1.5 Governing Equations for Water Quality Processes |
|
|
170 | (6) |
|
5.1.5.1 Hydrodynamic Effects |
|
|
172 | (1) |
|
5.1.5.2 Temperature Effects |
|
|
172 | (1) |
|
5.1.5.3 Michaelis-Menten Formulation |
|
|
173 | (1) |
|
5.1.5.4 State Variables in Water Quality Models |
|
|
174 | (2) |
|
|
176 | (11) |
|
5.2.1 Algal Biomass and Chlorophyll |
|
|
177 | (1) |
|
5.2.2 Equations for Algal Processes |
|
|
178 | (1) |
|
|
179 | (3) |
|
5.2.3.1 Nutrients for Algal Growth |
|
|
180 | (1) |
|
5.2.3.2 Sunlight for Algal Growth and Photosynthesis |
|
|
181 | (1) |
|
|
182 | (2) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
187 | (3) |
|
5.3.1 Decomposition of Organic Carbon |
|
|
188 | (1) |
|
5.3.2 Equations for Organic Carbon |
|
|
188 | (1) |
|
5.3.3 Heterotrophic Respiration and Dissolution |
|
|
189 | (1) |
|
|
190 | (5) |
|
5.4.1 Equations for Phosphorus State Variables |
|
|
192 | (1) |
|
5.4.1.1 Particulate Organic Phosphorus |
|
|
192 | (1) |
|
5.4.1.2 Dissolved Organic Phosphorus |
|
|
193 | (1) |
|
|
193 | (1) |
|
5.4.2 Phosphorus Processes |
|
|
193 | (2) |
|
5.4.2.1 Sorption and Desorption of Phosphate |
|
|
193 | (1) |
|
5.4.2.2 Effects of Algae on Phosphorus |
|
|
194 | (1) |
|
5.4.2.3 Mineralization and Hydrolysis |
|
|
195 | (1) |
|
|
195 | (8) |
|
|
196 | (1) |
|
5.5.2 Equations for Nitrogen State Variables |
|
|
197 | (3) |
|
5.5.2.1 Particulate Organic Nitrogen |
|
|
197 | (1) |
|
5.5.2.2 Dissolved Organic Nitrogen |
|
|
198 | (1) |
|
5.5.2.3 Ammonium Nitrogen |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (3) |
|
|
200 | (1) |
|
5.5.3.2 Mineralization and Hydrolysis |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
5.5.3.5 Nitrogen Fixation |
|
|
202 | (1) |
|
|
203 | (8) |
|
5.6.1 Biochemical Oxygen Demand |
|
|
204 | (2) |
|
5.6.2 Processes and Equations of Dissolved Oxygen |
|
|
206 | (2) |
|
5.6.3 Effects of Photosynthesis and Respiration |
|
|
208 | (1) |
|
|
208 | (2) |
|
5.6.5 Chemical Oxygen Demand |
|
|
210 | (1) |
|
|
211 | (16) |
|
5.7.1 Sediment Diagenesis Model |
|
|
212 | (3) |
|
5.7.1.1 Three Fluxes of the Sediment Diagenesis Model |
|
|
213 | (1) |
|
5.7.1.2 Two-Layer Structure of Benthic Sediment |
|
|
213 | (1) |
|
5.7.1.3 Three G Classes of Sediment Organic Matter |
|
|
214 | (1) |
|
5.7.1.4 State Variables of the Sediment Diagenesis Model |
|
|
214 | (1) |
|
5.7.2 Depositional Fluxes |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (8) |
|
|
217 | (2) |
|
5.7.4.2 Parameters for Sediment Fluxes |
|
|
219 | (3) |
|
5.7.4.3 Ammonium Nitrogen Flux |
|
|
222 | (1) |
|
5.7.4.4 Nitrate Nitrogen Flux |
|
|
222 | (1) |
|
5.7.4.5 Phosphate Phosphorus Flux |
|
|
223 | (1) |
|
5.7.4.6 Chemical Oxygen Demand and Sediment Oxygen Demand |
|
|
224 | (1) |
|
|
225 | (1) |
|
5.7.6 Coupling with Sediment Resuspension |
|
|
226 | (1) |
|
5.8 Submerged Aquatic Vegetation |
|
|
227 | (16) |
|
|
227 | (2) |
|
5.8.2 Equations for an SAV Model |
|
|
229 | (4) |
|
5.8.2.1 Shoots Production and Respiration |
|
|
230 | (2) |
|
5.8.2.2 Carbon Transport and Roots Respiration |
|
|
232 | (1) |
|
5.8.2.3 Epiphytes Production and Respiration |
|
|
232 | (1) |
|
5.8.3 Coupling with the Water Quality Model |
|
|
233 | (3) |
|
5.8.3.1 Organic Carbon Coupling |
|
|
233 | (1) |
|
5.8.3.2 Dissolved Oxygen Coupling |
|
|
234 | (1) |
|
5.8.3.3 Phosphorus Coupling |
|
|
234 | (1) |
|
5.8.3.4 Nitrogen Coupling |
|
|
235 | (1) |
|
5.8.3.5 Total Suspended Solids Coupling |
|
|
236 | (1) |
|
5.8.4 Long-Term Variations of SAV |
|
|
236 | (7) |
|
5.8.4.1 Background Information |
|
|
236 | (1) |
|
|
237 | (1) |
|
5.8.4.3 Hydrodynamic and Water Quality Model Results |
|
|
237 | (1) |
|
5.8.4.4 Long-Term Variations of SAV and Hurricane Impact |
|
|
238 | (4) |
|
5.8.4.5 Discussion and Conclusions |
|
|
242 | (1) |
|
5.9 Water Quality Modeling |
|
|
243 | (30) |
|
5.9.1 Model Parameters and Data Requirements |
|
|
244 | (2) |
|
5.9.1.1 Water Quality Parameters |
|
|
244 | (1) |
|
5.9.1.2 Data Requirements |
|
|
245 | (1) |
|
5.9.2 Case Study I: Lake Okeechobee |
|
|
246 | (12) |
|
|
246 | (1) |
|
5.9.2.2 Model Setup and Data Sources |
|
|
247 | (1) |
|
5.9.2.3 Water Quality Modeling Results |
|
|
248 | (4) |
|
5.9.2.4 SAV Modeling Results |
|
|
252 | (1) |
|
5.9.2.5 Impact of Hurricane Irene |
|
|
253 | (1) |
|
5.9.2.6 Impacts of SAV on Nutrient Concentrations |
|
|
254 | (2) |
|
5.9.2.7 Discussions and Summary |
|
|
256 | (2) |
|
5.9.3 Case Study II: St. Lucie Estuary and Indian River Lagoon |
|
|
258 | (21) |
|
|
258 | (3) |
|
|
261 | (1) |
|
5.9.3.3 Model Calibration and Verification |
|
|
261 | (5) |
|
5.9.3.4 Hydrodynamic and Water Quality Processes |
|
|
266 | (4) |
|
|
270 | (3) |
6 External Sources and TMDL |
|
273 | (12) |
|
6.1 Point Sources and Nonpoint Sources |
|
|
273 | (2) |
|
6.2 Atmospheric Deposition |
|
|
275 | (2) |
|
|
277 | (2) |
|
6.4 Watershed Processes and TMDL Development |
|
|
279 | (6) |
|
6.4.1 Watershed Processes |
|
|
280 | (1) |
|
6.4.2 Total Maximum Daily Load |
|
|
281 | (4) |
7 Mathematical Modeling and Statistical Analyses |
|
285 | (22) |
|
|
285 | (7) |
|
|
287 | (2) |
|
|
289 | (2) |
|
7.1.3 Spatial Resolution and Temporal Resolution |
|
|
291 | (1) |
|
|
292 | (8) |
|
7.2.1 Statistics for Model Performance Evaluation |
|
|
292 | (1) |
|
7.2.2 Correlation and Regression |
|
|
293 | (1) |
|
|
294 | (2) |
|
7.2.4 Empirical Orthogonal Function |
|
|
296 | (2) |
|
|
298 | (2) |
|
7.3 Model Calibration and Verification |
|
|
300 | (7) |
|
|
302 | (3) |
|
7.3.2 Model Verification and Validation |
|
|
305 | (1) |
|
7.3.3 Sensitivity Analysis |
|
|
305 | (2) |
8 Rivers |
|
307 | (28) |
|
8.1 Characteristics of Rivers |
|
|
307 | (3) |
|
8.2 Hydrodynamic Processes in Rivers |
|
|
310 | (5) |
|
8.2.1 River Flow and the Manning Equation |
|
|
310 | (2) |
|
8.2.2 Advection and Dispersion in Rivers |
|
|
312 | (1) |
|
|
313 | (2) |
|
8.3 Sediment and Water Quality Processes in Rivers |
|
|
315 | (4) |
|
8.3.1 Sediment and Contaminants in Rivers |
|
|
315 | (1) |
|
8.3.2 Impacts of River Flow on Water Quality |
|
|
316 | (1) |
|
8.3.3 Eutrophication and Periphyton in Rivers |
|
|
317 | (1) |
|
8.3.4 Dissolved Oxygen in Rivers |
|
|
318 | (1) |
|
|
319 | (16) |
|
8.4.1 Case Study I: Blackstone River |
|
|
320 | (9) |
|
8.4.1.1 Modeling Metals in the Blackstone River |
|
|
320 | (7) |
|
8.4.1.2 Impacts of Sediment and Metals Sources |
|
|
327 | (1) |
|
8.4.1.3 Discussion and Conclusions |
|
|
327 | (2) |
|
8.4.2 Case Study II: Susquehanna River |
|
|
329 | (6) |
|
|
329 | (2) |
|
8.4.2.2 Model Application |
|
|
331 | (2) |
|
|
333 | (2) |
9 Lakes and Reservoirs |
|
335 | (44) |
|
9.1 Characteristics of Lakes and Reservoirs |
|
|
335 | (7) |
|
9.1.1 Key Factors Controlling a Lake |
|
|
336 | (1) |
|
9.1.2 Vertical Stratification |
|
|
336 | (1) |
|
9.1.3 Biological Zones in Lakes |
|
|
337 | (2) |
|
9.1.4 Characteristics of Reservoirs |
|
|
339 | (2) |
|
9.1.5 Lake Pollution and Eutrophication |
|
|
341 | (1) |
|
9.2 Hydrodynamic Processes in Lakes |
|
|
342 | (10) |
|
9.2.1 Inflow, Outflow, and Water Budget |
|
|
343 | (2) |
|
9.2.2 Wind Forcing and Vertical Circulations |
|
|
345 | (1) |
|
9.2.3 Seasonal Variations of Stratification |
|
|
346 | (2) |
|
|
348 | (1) |
|
|
349 | (3) |
|
9.3 Sediment and Water Quality Processes in Lakes |
|
|
352 | (7) |
|
9.3.1 Sediment Deposition in Reservoirs and Lakes |
|
|
352 | (1) |
|
9.3.2 Algae and Nutrient Stratifications |
|
|
353 | (2) |
|
9.3.3 Dissolved Oxygen Stratifications |
|
|
355 | (2) |
|
9.3.4 Internal Cycling and Limiting Functions in Shallow Lakes |
|
|
357 | (2) |
|
|
359 | (20) |
|
9.4.1 Case Study I: Lake Tenkiller |
|
|
359 | (7) |
|
|
359 | (1) |
|
9.4.1.2 Data Sources and Model Setup |
|
|
360 | (1) |
|
9.4.1.3 Hydrodynamic Simulation |
|
|
361 | (2) |
|
9.4.1.4 Water Quality Simulation |
|
|
363 | (1) |
|
9.4.1.5 Discussion and Conclusions |
|
|
364 | (2) |
|
9.4.2 Case Study II: Lake Okeechobee |
|
|
366 | (16) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
367 | (5) |
|
9.4.2.4 Aquifer Storage and Recovery Application |
|
|
372 | (4) |
|
|
376 | (3) |
10 Estuaries and Coastal Waters |
|
379 | (42) |
|
|
379 | (3) |
|
|
382 | (7) |
|
|
382 | (3) |
|
|
385 | (2) |
|
|
387 | (2) |
|
10.3 Hydrodynamic Processes in Estuaries |
|
|
389 | (8) |
|
|
389 | (1) |
|
10.3.2 Estuarine Circulation |
|
|
390 | (1) |
|
10.3.3 Stratifications of Estuaries |
|
|
391 | (3) |
|
10.3.3.1 Highly Stratified Estuaries |
|
|
392 | (1) |
|
10.3.3.2 Moderately Stratified Estuaries |
|
|
392 | (1) |
|
10.3.3.3 Vertically Mixed Estuaries |
|
|
393 | (1) |
|
10.3.3.4 An Example of Estuarine Stratifications |
|
|
393 | (1) |
|
|
394 | (3) |
|
10.4 Sediment and Water Quality Processes in Estuaries |
|
|
397 | (5) |
|
10.4.1 Sediment Transport under Tidal Forcing |
|
|
397 | (2) |
|
10.4.2 Flocculation of Cohesive Sediment and Sediment Trapping |
|
|
399 | (1) |
|
10.4.3 Eutrophication in Estuaries |
|
|
400 | (2) |
|
10.5 Estuarine and Coastal Modeling |
|
|
402 | (19) |
|
10.5.1 Open Boundary Conditions |
|
|
403 | (3) |
|
10.5.2 Case Study I: Morro Bay |
|
|
406 | (8) |
|
|
406 | (1) |
|
10.5.2.2 Field Data Measurements |
|
|
407 | (1) |
|
|
408 | (1) |
|
10.5.2.4 Wetting and Drying Approaches |
|
|
408 | (1) |
|
10.5.2.5 Wet Cell Mapping |
|
|
409 | (1) |
|
10.5.2.6 Hydrodynamic Processes in Morro Bay |
|
|
409 | (5) |
|
10.5.2.7 Summary and Conclusions |
|
|
414 | (1) |
|
10.5.3 Case Study II: St. Lucie Estuary and Indian River Lagoon |
|
|
414 | (7) |
|
10.5.3.1 Ten-Year Simulations |
|
|
414 | (5) |
|
10.5.3.2 Influence of Sea Level Rise on Water Quality |
|
|
419 | (2) |
11 Wetlands |
|
421 | (58) |
|
11.1 Characteristics of Wetlands |
|
|
421 | (7) |
|
11.1.1 Benefits of Wetlands |
|
|
422 | (2) |
|
11.1.2 Unique Characteristics of Wetlands |
|
|
424 | (2) |
|
11.1.3 Emergent Aquatic Vegetation |
|
|
426 | (2) |
|
11.2 Hydrodynamic Processes in Wetlands |
|
|
428 | (11) |
|
11.2.1 Evapotranspiration |
|
|
430 | (2) |
|
11.2.2 Water Budget and Hydroperiod of a Wetland |
|
|
432 | (3) |
|
11.2.3 Effects of Vegetation on Wetland Flow |
|
|
435 | (2) |
|
11.2.4 Groundwater and Surface Water Interactions |
|
|
437 | (2) |
|
11.3 Sediment and Water Quality Processes in Wetlands |
|
|
439 | (15) |
|
11.3.1 Sediment Deposition |
|
|
440 | (2) |
|
11.3.2 Water Quality and Nutrient Removal |
|
|
442 | (4) |
|
11.3.3 Phosphorous Cycle and Removal |
|
|
446 | (5) |
|
11.3.4 Nitrogen Cycle and Carbon Cycle |
|
|
451 | (1) |
|
|
452 | (1) |
|
11.3.6 Pathogens and Metals |
|
|
453 | (1) |
|
11.4 Constructed Wetlands |
|
|
454 | (8) |
|
|
454 | (2) |
|
11.4.2 Processes in Constructed Wetlands |
|
|
456 | (6) |
|
|
462 | (17) |
|
11.5.1 Case Study I: Hydrodynamic Modeling of a Constructed Wetland |
|
|
463 | (5) |
|
|
463 | (1) |
|
11.5.1.2 Study Area and Model Setup |
|
|
464 | (2) |
|
|
466 | (2) |
|
11.5.1.4 Summary and Conclusions |
|
|
468 | (1) |
|
11.5.2 Case Study II: Water Quality Modeling of a Constructed Wetland |
|
|
468 | (11) |
|
|
469 | (1) |
|
11.5.2.2 Model Description and Model Setup |
|
|
469 | (3) |
|
11.5.2.3 Model-Data Comparison |
|
|
472 | (2) |
|
11.5.2.4 Phosphorus Processes in the STA |
|
|
474 | (1) |
|
11.5.2.5 TP Removal Efficiency |
|
|
475 | (3) |
|
11.5.2.6 Summary and Conclusions |
|
|
478 | (1) |
12 Risk Analysis |
|
479 | (52) |
|
12.1 Extreme Value Theory |
|
|
479 | (20) |
|
|
479 | (4) |
|
12.1.1.1 Distribution Patterns |
|
|
480 | (1) |
|
12.1.1.2 Climate Change and Extremes |
|
|
481 | (1) |
|
12.1.1.3 Methods for Analyzing Extremes |
|
|
482 | (1) |
|
|
483 | (5) |
|
|
483 | (2) |
|
12.1.2.2 GEV Family of Functions |
|
|
485 | (1) |
|
12.1.2.3 QQ Plot and PP Plot |
|
|
486 | (2) |
|
12.1.3 Peaks-Over-Threshold Method |
|
|
488 | (5) |
|
12.1.3.1 POT Method and Generalized Pareto Distribution |
|
|
488 | (2) |
|
12.1.3.2 Discussions on EVT and Software |
|
|
490 | (3) |
|
12.1.4 Case Study: Catastrophic Oil Spills |
|
|
493 | (6) |
|
|
493 | (1) |
|
12.1.4.2 Mathematical Method |
|
|
494 | (1) |
|
|
495 | (3) |
|
|
498 | (1) |
|
12.2 Environmental Risk Analysis |
|
|
499 | (32) |
|
|
499 | (2) |
|
12.2.2 Oil Spill Risk Analysis |
|
|
501 | (3) |
|
12.2.3 Trajectory Simulation |
|
|
504 | (6) |
|
12.2.3.1 Particle Tracking Method |
|
|
505 | (1) |
|
12.2.3.2 Analytical Solutions |
|
|
506 | (1) |
|
12.2.3.3 Testing Numerical Methods |
|
|
507 | (3) |
|
12.2.4 Conditional Probability and Combined Probability |
|
|
510 | (1) |
|
12.2.5 Simulating Oil Spills in the Gulf of Mexico |
|
|
511 | (6) |
|
12.2.5.1 Background Information |
|
|
511 | (1) |
|
12.2.5.2 Modeled Currents in the Gulf of Mexico |
|
|
511 | (1) |
|
12.2.5.3 Modeling Potential Oil Spills in the Gulf of Mexico |
|
|
512 | (3) |
|
12.2.5.4 Summary and Conclusions |
|
|
515 | (2) |
|
12.2.6 Analyzing Spill Risks in an Estuary |
|
|
517 | (10) |
|
|
517 | (1) |
|
|
518 | (2) |
|
12.2.6.3 Model-Simulated Ocean Currents, Ice, and Winds as Inputs to OSRA |
|
|
520 | (1) |
|
12.2.6.4 OSRA Model Domain and Trajectory Simulation |
|
|
521 | (3) |
|
12.2.6.5 Results and Discussion |
|
|
524 | (3) |
|
12.2.7 Deepwater Oil Spill Modeling for Assessing Environmental Impacts |
|
|
527 | (12) |
|
|
527 | (1) |
|
|
528 | (1) |
|
12.2.7.3 Modeling of Deep Water Spills |
|
|
528 | (2) |
|
12.2.7.4 Summary and Conclusions |
|
|
530 | (1) |
A Environmental Fluid Dynamics Code |
|
531 | (4) |
|
|
531 | (1) |
|
|
531 | (1) |
|
|
532 | (1) |
|
A.4 Toxic Chemical Transport and Fate |
|
|
532 | (1) |
|
A.5 Water Quality and Eutrophication |
|
|
532 | (1) |
|
|
533 | (1) |
|
A.7 Documentation and Application Aids |
|
|
533 | (2) |
B Conversion Factors |
|
535 | (2) |
C Contents of Electronic Files |
|
537 | (2) |
|
|
537 | (1) |
|
C.2 Blackstone River Model |
|
|
537 | (1) |
|
C.3 St. Lucie Estuary and Indian River Lagoon Model |
|
|
537 | (1) |
|
C.4 Lake Okeechobee Environmental Model |
|
|
538 | (1) |
|
C.5 Documentation and Utility Programs |
|
|
538 | (1) |
D Introduction to EFDC_Explorer |
|
539 | (6) |
|
|
539 | (1) |
|
D.2 New Features and Improvements |
|
|
539 | (6) |
|
|
539 | (1) |
|
D.2.2 Internal Wind-Wave Generation |
|
|
540 | (1) |
|
|
541 | (1) |
|
D.2.4 Open Multiprocessing and Dynamic Memory Allocation |
|
|
541 | (4) |
References |
|
545 | (32) |
Index |
|
577 | |