Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydrogen, Batteries and Fuel Cells

(Department of Energy Sciences, Lund University, USA)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 02-Jul-2019
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128169513
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 151,21 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 02-Jul-2019
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128169513
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Hydrogen, Batteries and Fuel Cells provides the science necessary to understand these important areas, considering theory and practice, practical problem-solving, descriptions of bottlenecks, and future energy system applications. The title covers hydrogen as an energy carrier, including its production and storage; the application and analysis of electrochemical devices, such as batteries, fuel cells and electrolyzers; and the modeling and thermal management of momentum, heat, mass and charge transport phenomena. This book offers fundamental and integrated coverage on these topics that is critical to the development of future energy systems.

  • Combines coverage of hydrogen, batteries and fuel cells in the context of future energy systems
  • Provides the fundamental science needed to understand future energy systems in theory and practice
  • Gives examples of problems and solutions in the use of hydrogen, batteries and fuel cells
  • Considers basic issues in understanding hydrogen and electrochemical devices
  • Describes methods for modeling and thermal management in future energy systems
Chapter 1 Introduction and background
1(14)
1.1 Primary energy sources - fossil fuels
1(1)
1.2 Renewable energy resources
2(1)
1.3 Conclusion energy sources
3(1)
1.4 Hydrogen
3(1)
1.5 Electrochemical devices
4(2)
1.6 Batteries
6(2)
1.7 Fuel cells
8(2)
1.8 Electrolyzers
10(1)
1.9 Summary
10(3)
1.10 Intention
13(1)
References
13(2)
Chapter 2 Electrochemistry and thermodynamics
15(22)
2.1 Introduction
15(1)
2.2 The electrochemical cell
15(2)
2.3 Thermodynamics
17(6)
2.3.1 First law of thermodynamics
18(1)
2.3.2 Enthalpy of formation h***of
19(1)
2.3.3 Electric work
19(1)
2.3.4 Cell voltage
20(1)
2.3.5 The Faraday's laws in electrochemistry
20(1)
2.3.6 General reaction
21(1)
2.3.7 The Nernst equation
21(2)
2.4 The electrical double layer and electrode kinetics
23(2)
2.5 Polarization curve and overpotential
25(3)
2.5.1 Activation losses
26(1)
2.5.2 Ohmic losses
27(1)
2.5.3 Mass transport loss or concentration loss
27(1)
2.5.4 Internal current and crossover
27(1)
2.5.5 Cell voltage under load
28(1)
2.6 Heat generation
28(3)
2.6.1 Modes of heat transfer
28(3)
2.7 Mass transport
31(2)
2.8 Porous media
33(2)
2.8.1 Governing equations of transport in porous media
35(1)
References
35(2)
Chapter 3 Hydrogen
37(20)
3.1 Introduction
37(1)
3.2 Properties of hydrogen
38(1)
3.3 Production of hydrogen
39(5)
3.3.1 Steam reforming
39(1)
3.3.2 Gasification of coal and biomass
40(1)
3.3.3 Electrolysis of water
41(2)
3.3.4 Thermochemical water splitting and thermolysis
43(1)
3.3.5 Photoelectrochemical water splitting
43(1)
3.3.6 Thermocatalytic cracking
44(1)
3.3.7 Roadmap for hydrogen production
44(1)
3.4 Storage of hydrogen
44(7)
3.4.1 Compressed gas
45(1)
3.4.2 Cryogenic storage
46(1)
3.4.3 Cryo-compressed storage
47(1)
3.4.4 Chemical storage
47(4)
3.5 Transportation of hydrogen
51(1)
3.6 Pros and cons for hydrogen
52(1)
3.6.1 Pros of hydrogen energy
52(1)
3.6.2 Cons of hydrogen energy
52(1)
3.7 Competitive fuels
53(1)
References
54(3)
Chapter 4 Battery technologies
57(24)
4.1 Introduction
57(2)
4.2 Lead-acid batteries
59(2)
4.3 Nickel-metal hydride batteries
61(1)
4.4 Lithium batteries
62(3)
4.4.1 Lithium metal batteries
62(1)
4.4.2 Lithium-ion and lithium-ion polymer batteries
63(1)
4.4.3 Lithium-oxygen batteries
64(1)
4.4.4 Lithium-sulfur batteries
65(1)
4.5 Nickel-zinc batteries
65(1)
4.6 Zinc-carbon batteries
66(2)
4.7 Zinc-air batteries
68(1)
4.8 Other battery types
69(1)
4.8.1 Redox flow batteries
69(1)
4.9 Voltage characteristics
70(2)
4.10 Standards and nomenclature
72(5)
4.10.1 Cell designs
75(2)
4.11 Ragone plot
77(1)
4.12 Summary
78(1)
References
79(2)
Chapter 5 Transport phenomena in batteries
81(12)
5.1 Introduction
81(2)
5.2 Electrolyte charge conservation
83(1)
5.2.1 Boundary conditions
83(1)
5.3 Electrolyte species conservation
83(1)
5.3.1 Boundary conditions
84(1)
5.4 Electrode charge conservation
84(1)
5.4.1 Boundary conditions
85(1)
5.5 Electrode species conservation
85(1)
5.5.1 Initial and boundary conditions
86(1)
5.5.2 Effective properties
86(1)
5.6 Chemical kinetics
86(1)
5.7 Thermal analysis
87(1)
5.7.1 Heat generation mechanism
87(1)
5.7.2 Heat conduction equation
88(1)
5.7.3 Case studies
88(1)
5.8 Memory effect
88(1)
5.9 Self-discharge
89(1)
References
90(3)
Chapter 6 Thermal management of batteries
93(18)
6.1 Introduction
93(2)
6.1.1 State functions (SOF)
94(1)
6.1.2 State of charge (SOC)
94(1)
6.1.3 State of health (SOH)
95(1)
6.2 Thermal runaway
95(1)
6.3 Importance of temperature
96(2)
6.4 Examples of thermal management systems
98(5)
6.4.1 Air cooling
98(1)
6.4.2 Liquid cooling
99(2)
6.4.3 Cooling by phase change material (PCM)
101(2)
6.4.4 Drawbacks of thermal management systems
103(1)
6.5 Mathematical modeling and experimental approaches
103(5)
6.5.1 Simple energy balance of a battery
104(1)
6.5.2 Energy balance of a non-isothermal battery
105(1)
6.5.3 Governing equations for convective cooling of a battery pack
105(1)
6.5.4 Heat generation
106(1)
6.5.5 Multi-scale multi-dimensional modeling
107(1)
6.6 Available softwares
108(1)
6.7 Summary
109(1)
References
109(2)
Chapter 7 Applications of batteries
111(12)
7.1 Introduction
111(1)
7.2 Electrical vehicles
112(1)
7.3 Battery types for electric vehicles
113(4)
7.3.1 Lead acid batteries and nickel metal hydride batteries (NiMH)
113(1)
7.3.2 Lithium-ion batteries
114(1)
7.3.3 Estimation of the weight of a long haulage truck
115(1)
7.3.4 Batteries for commercial vehicles
116(1)
7.4 Batteries for aviation
117(1)
7.5 Batteries for aerospace
118(1)
7.6 Batteries in shipping and marine applications
118(1)
7.7 Stationary batteries
119(1)
7.8 Grid storage batteries
120(1)
7.9 Bottlenecks of batteries
120(1)
7.10 Critical metals
121(1)
References
122(1)
Chapter 8 Fuel cell types - overview
123(22)
8.1 Introduction
123(4)
8.1.1 Types of fuel cells
124(1)
8.1.2 Proton exchange membrane fuel cells (PEMFC) or polymer electrolyte fuel cells (PEFC)
124(2)
8.1.3 Alkaline fuel cells (AFC)
126(1)
8.1.4 Phosforic acid fuel cells (PAFC)
126(1)
8.1.5 Solid oxide fuel cells (SOFC)
126(1)
8.1.6 Molten carbonate fuel cells (MCFC)
126(1)
8.1.7 Direct methanol fuel cells (DMFC)
127(1)
8.1.8 Reversible fuel cells
127(1)
8.1.9 Proton ceramic fuel cells
127(1)
8.1.10 Overall summary of characteristics of some fuel cells
127(1)
8.2 Complementary electrochemistry and thermodynamics for fuel cells
127(5)
8.2.1 Influence of pressure on the electrochemistry of fuel cells
128(1)
8.2.2 Effect of gas concentration, Nernst equation
128(2)
8.2.3 Fuel cell reaction involving hydrogen and oxygen
130(1)
8.2.4 Estimations of consumption of fuel and oxidant
130(2)
8.3 Solid oxide fuel cells --- SOFC
132(5)
8.3.1 Introduction
132(1)
8.3.2 Planar SOFCs
132(2)
8.3.3 Tubular SOFCs
134(1)
8.3.4 Performance of SOFCs
135(1)
8.3.5 Material issues
136(1)
8.3.6 Detailed structure of a unit cell
136(1)
8.3.7 Challenges
137(1)
8.4 Intermediate solid oxide fuel cells --- ITSOFC
137(2)
8.4.1 ITSOFC design options
138(1)
8.4.2 Performance of ITSOFC at reduced temperatures
138(1)
8.4.3 Remarks
138(1)
8.5 Proton exchange membrane fuel cells --- PEMFC
139(3)
8.5.1 Introduction
139(1)
8.5.2 Electrolytes
140(1)
8.5.3 Detailed structure of a PEMFC unit cell
141(1)
8.5.4 Water management
142(1)
8.5.5 Performance of a PEMFC
142(1)
8.6 Aerospace applications
142(2)
References
144(1)
Chapter 9 Transport phenomena in fuel cells
145(22)
9.1 Introduction
145(1)
9.1.1 Overall description of basic transport processes and operation of a fuel cell
145(1)
9.1.2 Electrochemical kinetics
145(1)
9.1.3 Heat and mass transfer
145(1)
9.1.4 Charge and water transport
146(1)
9.2 Heat transfer
146(7)
9.2.1 Heat generation
147(1)
9.2.2 Conservation of energy and the heat equation
148(2)
9.2.3 One-dimensional thermal analysis of a fuel cell
150(2)
9.2.4 Thermal radiation
152(1)
9.3 Mass transfer
153(3)
9.3.1 Diffusion mass transfer
153(1)
9.3.2 Convection mass transfer
154(1)
9.3.3 Mass transport of species in fuel cells
155(1)
9.3.4 Convective mass transfer coefficients
155(1)
9.4 Charge transport
156(4)
9.4.1 Charge transport by diffusion
156(1)
9.4.2 Charge transport by convection
157(1)
9.4.3 Charge transport by electrical potential gradient
157(1)
9.4.4 The Nernst-Planck equation
157(1)
9.4.5 Charge transport equations
158(1)
9.4.6 Boundary conditions for the electrical potential
159(1)
9.4.7 Voltage loss by charge transport
159(1)
9.5 Water transport
160(3)
9.5.1 Water transport in the electrolyte
160(2)
9.5.2 Water transport in gas channels and in gas-diffusion layers
162(1)
9.5.3 Flooding
162(1)
9.6 Diffusion coefficients
163(2)
9.6.1 Binary gas mixtures
163(1)
9.6.2 Liquids
164(1)
9.6.3 Diffusion in porous solids
164(1)
References
165(2)
Chapter 10 Modeling approaches for fuel cells
167(36)
10.1 Introduction
167(2)
10.2 Zero-order models of analysis
169(1)
10.3 One-dimensional models of analysis
170(1)
10.4 Multi-dimensional models of analysis
171(8)
10.4.1 Computational fluid dynamics (CFD) approaches
171(6)
10.4.2 Porous media approach
177(2)
10.4.3 Molecular dynamics based approaches
179(1)
10.5 Example proton exchange membrane fuel cells --- PEMFC
179(12)
10.5.1 Model description
180(1)
10.5.2 Governing equations
180(3)
10.5.3 Catalyst layer composition and volume fraction
183(5)
10.5.4 Cathode agglomerate model
188(1)
10.5.5 Determination of porosity of the GDLs after compression
189(1)
10.5.6 On numerical implementation and boundary conditions
189(1)
10.5.7 Some characteristics
190(1)
10.6 Example solid oxide fuel cells --- SOFC
191(6)
10.6.1 Transport of fuel and oxidant in channels
192(1)
10.6.2 Transport in the porous electrodes
192(1)
10.6.3 Transport in the solid electrolyte
193(1)
10.6.4 Transport in the interconnects
193(1)
10.6.5 Model of the electrochemical processes
194(1)
10.6.6 Some results
194(1)
10.6.7 Engineering bridges in analysis of multiscale issues
194(3)
10.7 Softwares
197(1)
10.8 Summary
197(1)
References
198(5)
Chapter 11 Fuel cell systems and applications
203(14)
11.1 Introduction
203(1)
11.2 Portable power
203(1)
11.2.1 Backup power
204(1)
11.3 Transportation
204(2)
11.4 Stationary power
206(2)
11.5 Maritime applications
208(1)
11.6 Aerospace applications
209(1)
11.7 Aircraft applications
210(1)
11.8 Bottlenecks for fuel cells
211(1)
11.9 Current status FCEVs versus BEVs
212(1)
11.10 System aspects
213(1)
References
214(3)
Appendices-tables 217(6)
Index 223
Bengt Sundén received M. Sc. in Mechanical Engineering 1973, Ph. D. and Docent in Applied Thermodynamics and Fluid Mechanics 1979 and 1980, respectively, from Chalmers University of Technology, Sweden. He is a Professor of Heat Transfer at Lund University, Sweden since 1992 and served as Head of Energy Sciences during 1995-2016. The research activities include compact heat exchangers, enhanced heat transfer, gas turbine heat transfer, combustion-related heat transfer and others. He established and was editor-in-chief of International Journal of Heat Exchangers 1999-2008, associate editor of ASME J. Heat Transfer 2005-2008, editor-in-chief of Developments in Heat Transfer (WIT Press, UK). He published >700 papers in >300 journals, books, and proceedings, edited 30 books and authored three textbooks. He supervised more than 180 M Sc theses, 46 Licentiate of Engineering theses, 44 PhD-theses.