Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydrogeology: Groundwater Science and Engineering

(University of Ličge, Belgium)
  • Formāts: 492 pages
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9780429894404
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 48,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 492 pages
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9780429894404
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This text combines the science and engineering of hydrogeology in an accessible, innovative style. As well as providing physical descriptions and characterisations of hydrogeological processes, it also sets out the corresponding mathematical equations for groundwater flow and solute/heat transport calculations. And, within this, the methodological and conceptual aspects for flow and contaminant transport modelling are discussed in detail. This comprehensive analysis forms the ideal textbook for graduate and undergraduate students interested in groundwater resources and engineering, and indeed its analyses can apply to researchers and professionals involved in the area.

Recenzijas

"The underlying theory and the link to practical applications are provided and well explained. The potential readership is very wide. Professionals working in academia and industry will find this book to be a valuable companion that broadens the horizon and refreshes the basics. I recommend it also to undergraduate and graduate students, but some of the topics (e.g., unsaturated flow, numerical modeling, and land subsidence) are more suited for graduate students. The book is also highly recommended to open-minded hydrologists who might want to extend or brush up their knowledge of the subsurface."

-- Philip Brunner in Groundwater

Foreword xv
Preface xvii
Author xix
1 General introduction
1(8)
1.1 Freshwater resources and groundwater resources
1(1)
1.2 Anthropocentric vision
2(1)
1.3 Hydrogeology within hydrology
3(1)
1.4 Basics about groundwater: partially and fully saturated zones
3(1)
1.5 Prospecting groundwater
4(1)
1.6 Content of this book
4(5)
References
6(3)
2 Hydrologic balance and groundwater
9(36)
2.1 Water cycle and balance assessments
9(4)
2.2 Precipitation
13(2)
Time averaged values
14(1)
Spatial averaged values
14(1)
2.3 Evapotranspiration
15(12)
Evaporation
16(1)
Transpiration
16(1)
ET measurements
16(3)
ET estimation equations
19(8)
2.4 Recharge
27(5)
Introduction
27(2)
Water table fluctuation method
29(1)
Chloride mass balance method
30(2)
2.5 Base flow
32(13)
References
37(8)
3 Groundwater terminology and examples of occurrences
45(14)
3.1 Terminology
45(5)
3.2 Examples of occurrences
50(9)
Aquifers separated by confining units: lateral and vertical leakages
50(1)
Partitioned aquifers resulting from recent horst/graben tectonics
51(1)
Aquifers in successive thrust faults and sheets
51(1)
Fractured bedrock and colluvium of variable lithology
51(1)
Perched aquifer and heterogeneous bedrock aquifer
52(1)
Variable interactions between aquifers induced by human activities
53(1)
A semicon fined to unconfined drained chalk aquifer
54(1)
Karstic groundwater system
54(1)
Groundwater flow direction in a limestone aquifer and the influence of the base water level
55(1)
Importance of a clear and justified geological interpretation
56(2)
References
58(1)
4 Saturated groundwater flow
59(48)
4.1 Representative elementary volume (REV) concept
59(2)
4.2 Porosities
61(8)
Total porosity
61(3)
Effective porosity
64(5)
Water content
69(1)
4.3 Piezometric heads
69(4)
Introduction
69(1)
Simplified Bernoulli equation and piezometric head
70(2)
Practical measurements of the piezometric head
72(1)
4.4 Darcy's law and hydraulic conductivity
73(7)
Experimental Darcy's law
73(1)
Specific discharge and velocities
74(1)
Hydraulic conductivity and intrinsic permeability
75(2)
3D Darcy's law
77(3)
4.5 Heterogeneity: Upscaled, equivalent, and averaged hydraulic conductivity values
80(2)
Equivalent averaged hydraulic conductivity values for flow parallel or perpendicular to stratified layers
80(2)
Geostatistically derived equivalent averaged hydraulic conductivity values
82(1)
4.6 Application of Darcy's law in heterogeneous and fractured media
82(7)
Local and regional groundwater flow
82(5)
Hydraulic conductivity and groundwater flow in fractured rocks
87(2)
4.7 Limitations of the validity of Darcy's law
89(3)
4.8 Transmissivity concept
92(1)
4.9 Equations of the steady-state groundwater flow (saturated conditions)
93(2)
4.10 Storage variation under saturated conditions
95(5)
Specific storage coefficient or specific storativity definition
95(1)
Effective stress and Terzaghi concept
96(1)
Specific storage coefficient and development of the mass balance equation
97(3)
4.11 Equations of the transient groundwater flow
100(7)
3D groundwater flow equations
100(1)
2D vertical groundwater flow equations
101(1)
Storage coefficient
101(1)
2D horizontal groundwater flow equations in confined conditions
102(1)
2D horizontal groundwater flow equations in unconfined conditions
103(1)
References
104(3)
5 Hydraulic conductivity measurements
107(48)
5.1 Introduction
107(1)
5.2 Laboratory tests
107(4)
Empirical relations based on grain size distribution
108(1)
Constant head permeameter
109(1)
Falling head permeameter
110(1)
Oedometer and isotropic tests
110(1)
5.3 Slug tests
111(3)
Interpretation
112(2)
5.4 Pumping tests
114(30)
Design, procedures, and measurements
115(2)
Interpretation of steady-state data
117(8)
Interpretation of transient data
125(19)
5.5 Other measurements methods
144(11)
Lugeon test or packer test
144(1)
Le franc method
145(1)
Jacob and Lohman solution for an artesian flowing well test
146(1)
Inverse auger hole, infiltrometer, or Porchet method
147(1)
Field-based air permeameter measurements
148(1)
References
149(6)
6 Land subsidence induced by pumping and drainage
155(18)
6.1 Introduction
155(1)
6.2 Effective stress and water pressure variations in depth
155(3)
6.3 Coupling groundwater flow and geomechanical aspects in porous media
158(4)
Variation of the specific storage coefficient
159(1)
Variation of the permeability
160(2)
6.4 Examples of sinking cities and famous case studies
162(5)
Venice
162(1)
The Netherlands
163(1)
Bangkok
164(1)
Mexico City
165(1)
Shanghai
166(1)
6.5 New developments in measurements and remediation
167(6)
References
170(3)
7 Introduction to groundwater quality and hydrochemistry
173(30)
7.1 Introduction and units
173(5)
Phases and constituents
174(1)
Concentration units
174(4)
7.2 Natural solutes and main physicochemical characteristics of groundwater
178(10)
Major and minor constituents
178(1)
TDS, electrical conductivity, and DOC
179(2)
Electroneutrality or electrical charge balance
181(1)
pH and aqueous reactions
181(1)
Carbonate system, pHs, Langelier saturation index, and hardness
182(2)
Alkalinity
184(1)
Redox potential (Eh)
185(1)
Dissociation, dissolution, and precipitation, rock weathering
186(2)
Cation exchange capacity, sodium adsorption ratio
188(1)
7.3 Graphs, diagrams, and multivariate analysis of chemical groundwater compositions
188(6)
Conventional bar and pie charts
189(1)
Semi-log Schoeller diagram
190(1)
Stiff diagrams
190(2)
Piper diagrams
192(2)
Principal component analysis and self-organizing maps
194(1)
7.4 Groundwater quality standards
194(2)
General background and context
194(1)
Drinking water quality standards
195(1)
7.5 Groundwater sampling and monitoring strategies
196(7)
Depth-averaged versus multilevel sampling
197(1)
Sampling procedure and representativity of the sampled groundwater
198(1)
References
199(4)
8 Contaminant transport, residence times, prevention, and remediation
203(88)
8.1 Introduction
203(1)
8.2 Solute transport
204(31)
Diffusion
204(1)
Advection
205(2)
Dispersion
207(12)
Adsorption-desorption
219(3)
Decay/degradation
222(2)
Solute mass conservation equation in groundwater
224(3)
Immobile water effect/matrix diffusion
227(4)
Reactive solute transport
231(4)
8.3 NAPL contaminant transport
235(7)
NAPL solubility in groundwater
235(2)
NAPL affinity for solids and groundwater
237(1)
Vapor mobility of NAPL organic contaminants
237(1)
NAPL mobility in unsaturated and saturated zones
238(4)
8.4 In situ remediation of contaminated groundwater
242(5)
Source cleanup and containment-stabilization
244(1)
Pump and treat systems
245(1)
Soil vapor extraction and air sparging
246(1)
Bioremediation
246(1)
Reactive barriers and zones
247(1)
Phytoremediation
247(1)
8.5 Tracer tests
247(8)
Tracer tests configurations
249(4)
Tracers, injection, and sampling operations
253(2)
8.6 Transport and residence times
255(5)
Piston-flow groundwater age: an idealized concept
255(1)
Groundwater age: A misleading term
256(1)
The statistical approach for calculating ages: Mean age and residence time
256(4)
8.7 Isotopes and environmental tracer interpretations
260(11)
Stable isotopes
260(8)
Radioactive isotopes
268(3)
8.8 Vulnerability and protection of groundwater
271(20)
Protection zones
272(1)
Vulnerability and sensitivity mapping
273(6)
References
279(12)
9 Groundwater flow and transport under partially saturated conditions
291(14)
9.1 Introduction
291(1)
9.2 Capillary pressures
291(3)
9.3 Partially saturated flow
294(5)
Hydraulic conductivity under partially saturated conditions
294(3)
Darcy-Buckingham law under partially saturated conditions
297(1)
Generalized storage coefficient under partially saturated conditions or moisture capacity
297(1)
Richards equation for flow under partially saturated conditions
298(1)
9.4 Contamination and transport under partially saturated conditions
299(6)
NAPL contamination and multiphase flow
300(3)
References
303(2)
10 Salinization and density dependent groundwater flow and transport
305(18)
10.1 Salinization processes
305(9)
Evaporite dissolution
305(1)
Evapotranspiration
306(3)
Contamination by seawater
309(2)
Field measurements and sampling
311(3)
10.2 Saltwater-freshwater interface concept
314(1)
10.3 Coupled density dependent groundwater flow and solute transport equations
315(8)
Density dependent flow equations
315(2)
Density dependent solute transport equation
317(1)
Constitutive or state equations
318(1)
Boussinesq approximation and usual assumptions for seawater intrusions
318(1)
References
319(4)
11 Heat transfer in aquifers and shallow geothermy
323(22)
11.1 Introduction
323(1)
11.2 Heat transfer processes, equations, and properties
324(7)
Heat conduction
324(2)
Heat advection and convection
326(1)
Thermal dispersion
327(2)
Heat conservation equation
329(1)
Dimensionless numbers for assessing the most important processes
329(2)
11.3 Hydrogeological methodology for shallow geothermal projects
331(14)
Introduction to shallow thermal energy storage systems
331(5)
Closed-loop shallow geothermal systems
336(1)
Open-loop shallow geothermal systems
337(1)
Geothermal systems in old flooded mines
338(2)
References
340(5)
12 Methodology for groundwater flow and solute transport modeling
345(62)
12.1 Introduction and definitions
345(4)
Definitions and terminology
345(4)
Purposes and methodology overview
349(1)
12.2 Conceptual model
349(13)
Processes to be simulated
349(3)
Parsimony or complexity
352(1)
Steady-state versus transient simulations
353(1)
Dimensionality of the model
354(4)
Conceptual choices for fractured and karst media
358(2)
Interactions with surface waters and integrated models
360(1)
Other choices and assumptions
361(1)
12.3 Initial and boundary conditions
362(10)
Initial conditions
362(1)
Boundary conditions
362(10)
12.4 Model design and data input
372(2)
Geometry and geology
373(1)
Hydrogeological parameters
373(1)
Stress factors
374(1)
Historical data
374(1)
12.5 Calibration, validation, sensitivity analysis, and inverse modeling
374(13)
Optimization
375(4)
Sensitivity analysis
379(3)
Inverse modeling
382(4)
Uncertainty of predictions
386(1)
12.6 Introduction to groundwater geostatistics and probability
387(8)
Continuous random geostatistical variables
387(3)
Probability and Bayesian approach
390(1)
Monte Carlo simulations
391(1)
Geostatistics for modeling heterogeneity
391(4)
12.7 Prediction focused approaches based on Bayesian evidential learning
395(12)
References
396(11)
13 Main principles of numerical techniques used in groundwater modeling
407(52)
13.1 Introduction and terminology
407(1)
13.2 Numerical techniques for groundwater flow modeling
408(29)
Finite difference method (FDM)
408(14)
Finite element method (FEM)
422(14)
Finite volume method (FVM)
436(1)
13.3 Numerical techniques for solute transport modeling
437(22)
Numerical Peclet and Courant numbers
438(1)
Time integration schemes
439(1)
Eulerian or grid-based methods
440(6)
Eulerian-Lagrangian methods
446(4)
Random walk methods
450(2)
Reactive transport modeling
452(1)
References
453(6)
Index 459
Alain Dassargues is Professor in Hydrogeology and Environmental Geology at the University of Ličge in Belgium, he was also part-time professor at the KULeuven (1995-2012) and Chair of the Belgian Chapter of the International Association of Hydrogeologists (2012-2016).