Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydrophilic Interaction Chromatography: A Guide for Practitioners

, , Series edited by (Drake University, Des Moines, IA, USA)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 114,15 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Responding to the growing popularity of HILIC and the relative dearth of references in comparison to reversed-phase high-performance liquid chromatography (RP-HPLC) or other methods, Olsen and Pack (both with extensive experience at Eli Lilly) have prepared this resource. Nine contributed chapters address separation mechanisms, stationary phases, method development, pharmaceutical applications, drug discovery, biochemical applications, targeted metabolomics and small molecule bioanalysis, food and environmental (and other) applications, and theory and practice of two-dimensional liquid chromatography separations involving the HILIC mode of separation. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

Discover how to use HILIC to analyze and better understand polar compounds

An increasingly popular analytical method, hydrophilic interaction chromatography (HILIC) has the ability to retain and separate polar compounds that are often difficult to analyze by reversed-phase high-performance liquid chromatography (HPLC) or other analytical methods. Offering a comprehensive review, this book enables readers to develop a fundamental understanding of how HILIC works and then apply that knowledge to develop and implement a variety of practical applications.

Hydrophilic Interaction Chromatography begins with discussions of HILIC retention mechanisms, stationary phases, and general method development. This sets the foundation for the book's extensive coverage of applications. The authors address unique separation challenges for bioanalytical, environmental, pharmaceutical, and biochemical applications. Moreover, there is a thorough discussion of HILIC in two-dimensional chromatography.

With contributions from leading analytical scientists who have extensive experience in HILIC as well as HPLC, Hydrophilic Interaction Chromatography serves as a practical guide for researchers, featuring:

  • Detailed examples of HILIC methods and development approaches
  • Thorough explanations of retention mechanisms and the impact of stationary phase and mobile phase properties on separations
  • Step-by-step guidance for developing efficient, sensitive, and robust HILIC methods
  • References to the primary literature at the end of each chapter

Hydrophilic Interaction Chromatography is written for scientists who use or develop analytical methods for the separation of polar compounds. In particular, these researchers will discover how HILIC can be used to analyze and better understand the composition of pharmaceutical, bioanalytical, biochemical, chemical, food, and environmental samples.

Recenzijas

The well-balanced mixture with updated HILIC theory and detailed practical descriptions makes it a useful resource for scientists working in analytical chemistry, biochemistry, biotechnology, and bioinformatics, and a valuable resource for people in the analytical column industry.  (Analytical and Bioanalytical Chemistry, 22 September 2013)

 

Preface xiii
Contributors xv
Chapter 1 Separation Mechanisms in Hydrophilic Interaction Chromatography
1(42)
David V. McCalley
1.1 Introduction
1(2)
1.2 Historical Background: Recognition of the Contribution of Partition, Ion Exchange, and RP Interactions to the Retention Process
3(4)
1.3 Recent Studies on the Contributory Mechanisms to HILIC Retention
7(31)
1.3.1 Overview
7(7)
1.3.2 Contribution of Adsorption and Partition to HILIC Separations
14(6)
1.3.3 Further Studies on the Contribution of Ionic Retention in HILIC
20(1)
1.3.3.1 Introduction
20(1)
1.3.3.2 Mobile Phase Considerations for the Separation of Ionogenic Compounds
21(2)
1.3.3.3 Ionization State of the Column as a Function of pH
23(3)
1.3.3.4 Quantitation of Ionic Retention Effects on Different Columns
26(7)
1.3.4 RP Retention on Bare Silica
33(2)
1.3.5 Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC): A New Separation Mode in HILIC
35(3)
1.4 Conclusions
38(5)
References
38(5)
Chapter 2 Stationary Phases for Hilic
43(44)
Mohammed E.A. Ibrahim
Charles A. Lucy
2.1 Introduction
43(1)
2.2 HILIC Stationary Phases
44(17)
2.2.1 Underivatized Silica
44(1)
2.2.1.1 Totally Porous Silica Particles
45(5)
2.2.1.2 Superficially Porous (Core Shell) Silica Particles
50(1)
2.2.1.3 Monolithic Silica
50(1)
2.2.1.4 Ethylene Bridged Hybrids (BEH)
51(1)
2.2.2 Derivatized Silica
52(1)
2.2.2.1 Neutral Derivatized Silica
52(4)
2.2.2.2 Zwitterionic Derivatized Silica
56(2)
2.2.2.3 Positively Charged Derivatized Silica
58(1)
2.2.2.4 Negatively Charged Derivatized Silica
59(2)
2.2.3 Nonsilica Phases
61(1)
2.2.3.1 Amino Phases
61(1)
2.2.3.2 Sulfonated S-DVB Phases
61(1)
2.3 Commercial HILIC Phases
61(16)
2.3.1 Efficiency Comparison
62(9)
2.3.2 Retention and Selectivity Comparisons
71(6)
2.4 Conclusions
77(10)
Acknowledgments
77(1)
References
77(10)
Chapter 3 HILIC Method Development
87(24)
Yong Guo
Xiande Wang
3.1 Introduction
87(1)
3.2 General Method Development Considerations
88(5)
3.2.1 Method Objectives
88(2)
3.2.2 Target Compounds Consideration
90(1)
3.2.3 Systematic Method Development
91(2)
3.3 HILIC Method Development
93(11)
3.3.1 Systematic Approach to Column Screening
93(4)
3.3.2 Optimization of Method Parameters
97(1)
3.3.2.1 Final Column Selection
97(2)
3.3.2.2 Organic Solvents
99(1)
3.3.2.3 Mobile Phase pH
99(2)
3.3.2.4 Buffer Types and Concentration
101(2)
3.3.2.5 Column Temperature
103(1)
3.3.2.6 Sample Solvents
103(1)
3.4 Detection for HILIC Methods
104(3)
3.4.1 MS Detector
104(3)
3.4.2 CAD
107(1)
3.5 Conclusions
107(4)
References
108(3)
Chapter 4 Pharmaceutical Applications of Hydrophilic Interaction Chromatography
111(58)
Bernard A. Olsen
Donald S. Risley
V. Scott Sharp
Brian W. Pack
Michelle L. Lytle
4.1 Introduction
112(5)
4.1.1 Definition of the Problem
114(1)
4.1.2 Selection of Conditions
115(2)
4.1.3 Validation of the Method
117(1)
4.1.4 General References
117(1)
4.2 Determination of Counterions
117(12)
4.2.1 Salt Selection and Options for Counterion Determination
117(3)
4.2.2 Specific Counterion Analysis
120(5)
4.2.3 Counterion Screening with Gradient Elution
125(3)
4.2.4 Suitable Reference Standards for Counterion Analysis
128(1)
4.3 Main Component Methods
129(6)
4.3.1 Potency/Assay Methods
129(2)
4.3.2 Equipment Cleaning Verification Assays
131(2)
4.3.3 Dissolution Methods
133(2)
4.4 Determination of Impurities
135(11)
4.4.1 Impurity Screening and Orthogonal Separations
135(3)
4.4.2 Impurity Identification
138(1)
4.4.3 Specific Impurity Determination
138(1)
4.4.3.1 Pyrimidines, Purines, and Nucleosides
138(2)
4.4.3.2 Hydrazines with Ethanol as Weak Solvent
140(1)
4.4.3.3 Neutral and Charged Polar Impurities in a Drug Substance
141(2)
4.4.3.4 Polar Basic Compounds and Impurities
143(1)
4.4.4 Statistical DOE for Optimization
144(2)
4.5 Excipients
146(6)
4.5.1 Parenteral and Solution Formulations
146(2)
4.5.2 Tablets, Capsules, and Inhalation Products
148(2)
4.5.3 Sugars
150(1)
4.5.4 Stabilizers and Antioxidants
150(2)
4.6 Chiral Applications
152(9)
4.6.1 Chiral Selectors and HILIC
153(1)
4.6.1.1 Cyclodextrins
153(1)
4.6.1.2 Macrocyclic Antibiotics
154(2)
4.6.1.3 Chiral Crown Ethers
156(2)
4.6.1.4 Cyclofructans
158(2)
4.6.2 Conclusions for Chiral Separations
160(1)
4.7 Conclusions
161(8)
References
161(8)
Chapter 5 Hydrophilic Interaction Chromatography (HILIC) For Drug Discovery
169(26)
Alfonso Espada
Mark Strege
5.1 Drug Discovery Model
169(1)
5.2 HILIC Applications for In Vitro Biology
170(6)
5.2.1 Biological Screening and Hit Finding
170(1)
5.2.1.1 Target Selection and Assay Validation
171(2)
5.2.1.2 High-Throughput Screening (HTS)
173(1)
5.2.2 New Drug Discovery Strategies
174(2)
5.3 HILIC Applications for Discovery Chemistry
176(10)
5.3.1 Lead Identification
176(4)
5.3.2 Lead Optimization
180(1)
5.3.2.1 ADME Profile
181(1)
5.3.2.2 Biopharmaceutics
181(2)
5.3.2.3 Chiral Purity
183(1)
5.3.3 Candidate Selection
183(3)
5.4 Practical Considerations
186(1)
5.5 Conclusions
187(8)
References
188(7)
Chapter 6 Advances in Hydrophilic Interaction Chromatography (HILIC) For Biochemical Applications
195(24)
Fred Rabel
Bernard A. Olsen
6.1 Introduction
195(1)
6.2 Carbohydrates
196(7)
6.2.1 Mono- and Disaccharides
196(1)
6.2.2 Oligosaccharides and Polysaccharides
197(1)
6.2.3 Glycans
197(2)
6.2.3.1 Glycan and Glycopeptide Analysis
199(3)
6.2.3.2 HILIC for Sample Enrichment
202(1)
6.3 Nucleobases and Nucleosides
203(2)
6.4 Oligonucleotides
205(1)
6.5 Amino Acids and Peptides
206(3)
6.6 Proteins
209(1)
6.7 Phospholipids
209(2)
6.8 Conclusions
211(8)
References
212(7)
Chapter 7 HILIC-MS for Targeted Metabolomics and Small Molecule Bioanalysis
219(20)
Hien P. Nguyen
Heather D. Tippens
Kevin A. Schug
7.1 Introduction
219(2)
7.2 The Role of HILIC-MS in Targeted Metabolomics versus Other LC Modes
221(2)
7.3 Strategies for Method Development Based on Retention Behavior of Targeted Metabolites on HILIC Stationary Phases
223(8)
7.3.1 Retention Behavior of Metabolites on HILIC Stationary Phases
225(2)
7.3.2 Robustness, Mobile Phase Compositions, and Matrix Effects
227(4)
7.4 Summary
231(8)
Acknowledgments
232(1)
References
232(7)
Chapter 8 HILIC for Food, Environmental, and Other Applications
239(26)
Michael A. Koupparis
Nikolaos C. Megoulas
Aikaterini M. Gremilogianni
8.1 Introduction
239(1)
8.2 Food Applications for HILIC
240(14)
8.2.1 Review of HILIC Analytical Methods for Food Analysis
240(1)
8.2.1.1 Sample Preparation in HILIC Methods Applied to Food Matrices
240(2)
8.2.1.2 HILIC Methods Applied to Food Matrices: Chromatographic Parameters and Detection
242(1)
8.2.2 Selected Detailed Examples of HILIC Applications in Food Analysis
243(1)
8.2.2.1 Melamine (MEL) and Cyanuric Acid (CYA)
243(7)
8.2.2.2 Water-Soluble Vitamins
250(3)
8.2.2.3 Seafood and Other Toxins
253(1)
8.3 Environmental and Other Applications of HILIC
254(3)
8.3.1 Review of Environmental Applications Based on the Stages of Method Development
254(2)
8.3.2 Selected Detailed Examples of Environmental and Other HILIC Applications
256(1)
8.3.2.1 Metals and Their Related Organic Compounds
256(1)
8.3.2.2 Pharmaceutical Compounds in Aqueous Environmental Samples
256(1)
8.3.2.3 Other Applications
257(1)
8.4 Conclusions
257(8)
References
259(6)
Chapter 9 Theory and Practice of Two-Dimensional Liquid Chromatography Separations Involving the HILIC Mode of Separation
265(42)
Stephen R. Groskreutz
Dwight R. Stoll
9.1 Fundamentals of Multidimensional Liquid Chromatography
265(13)
9.1.1 Scope
265(1)
9.1.2 Potential Advantages of 2D Separations over Conventional Separations
266(3)
9.1.3 Modes of 2D Separation
269(1)
9.1.3.1 Offline Fraction Transfer
270(1)
9.1.3.2 Online Fraction Transfer
271(1)
9.1.3.3 Conceptual Comparison of Different 2D Separation Modes
271(3)
9.1.4 Undersampling
274(2)
9.1.5 Orthogonality
276(2)
9.2 Complementarity of HILIC Selectivity to Other Separation Modes
278(1)
9.3 Instrumentation and Experimental Considerations
278(13)
9.3.1 Online versus Offline 2DLC
280(1)
9.3.1.1 Offline 2DLC
280(2)
9.3.1.2 Online 2DLC
282(5)
9.3.2 Solvent Incompatibility
287(1)
9.3.2.1 Partial Mobile Phase Evaporation
287(1)
9.3.2.2 Fraction Transfer Volume Relative to the Second Dimension Column Volume
288(1)
9.3.2.3 On-Column Focusing
288(1)
9.3.3 Fast Separations
289(1)
9.3.3.1 General Considerations for Fast LC Separations
290(1)
9.3.3.2 Fast HILIC Separations
290(1)
9.4 Applications
291(7)
9.4.1 TCM
291(5)
9.4.2 Polymers
296(1)
9.4.3 Oligonucleotides
296(2)
9.5 The Future of HILIC Separations in 2DLC
298(9)
References
298(9)
Index 307
BERNARD A. OLSEN, PhD, has close to three decades of experience at Eli Lilly and Company in chemistry, manufacturing, and control of drug substances and drug products. He contributed to the development and support of more than twenty-five commercialized drugs as well as numerous developmental drugs. A Fellow of the American Association of Pharmaceutical Scientists, Dr. Olsen currently provides consulting and training services to the pharmaceutical industry and serves as Chair of the USP Expert Committee on Monograph Development: Small Molecules 3.

BRIAN W. PACK, PhD, is a Research Advisor in Analytical Sciences R&D at Eli Lilly and Company, where he has contributed to the development of many solid oral and parenteral dosage forms. He is recognized for his contributions to HPLC method development, raw material control strategies, genotoxic impurities, cleaning validation, and colorimetry. Dr. Pack has published on the topics of HILIC applications, Raman spectroscopy, mass spectrometry, dissolution, and cleaning verification.