Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydrothermal Behavior of Fiber- and Nanomaterial-Reinforced Polymer Composites [Taylor & Francis e-book]

(NIT Rourkela, INDIA), (School of Mechanical Engineering, KIIT, Bhubaneswar, India), (Maulana Azad National Institute of Technology, Bhopal, India),
  • Formāts: 224 pages, 14 Tables, black and white; 112 Illustrations, black and white
  • Izdošanas datums: 05-May-2020
  • Izdevniecība: CRC Press
  • ISBN-13: 9780429287824
Citas grāmatas par šo tēmu:
  • Taylor & Francis e-book
  • Cena: 209,00 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standarta cena: 298,57 €
  • Ietaupiet 30%
  • Formāts: 224 pages, 14 Tables, black and white; 112 Illustrations, black and white
  • Izdošanas datums: 05-May-2020
  • Izdevniecība: CRC Press
  • ISBN-13: 9780429287824
Citas grāmatas par šo tēmu:

Hydrothermal Behavior of Fiber- and Nanomaterial-Reinforced Polymer Composites provides critical information regarding the in-service environmental damage and degradation studies of nano/fiber reinforced polymer (FRP) composites focusing on hydrothermal degradation. Covering hydrothermal properties of a wide range of polymer composites, the book is aimed at graduate students, researchers, and professionals in material engineering, composite materials, nanomaterials, and related fields.

Preface ix
Authors xi
1 Introduction
1(20)
1.1 Polymer Nanocomposites
1(1)
1.2 Classification
1(9)
1.2.1 Introduction
1(1)
1.2.2 Thermosetting Polymers
2(1)
1.2.3 Thermoplastic Polymers
2(3)
1.2.4 Polymer-Polymer
5(1)
1.2.5 Polymer-Metal
6(1)
1.2.6 Polymer-Ceramic
7(1)
1.2.7 Polymer-Carbon
7(2)
1.2.8 Polymer-Natural Fiber
9(1)
1.3 Applications
10(8)
1.3.1 Introduction
10(1)
1.3.2 Aerospace
10(2)
1.3.3 Automotive
12(1)
1.3.4 Infrastructures/Civil Structures
12(2)
1.3.5 Food Packaging
14(1)
1.3.6 Energy
14(1)
1.3.7 Bio-Medical
15(3)
References
18(3)
2 Fabrication and Characterization of Nanocomposites
21(42)
2.1 Blending of Nanofillers
21(7)
2.1.1 Introduction
21(1)
2.1.2 Mechanical Mixing
21(1)
2.1.2.1 Ball Milling
21(2)
2.1.2.2 Three Roll Mixing
23(1)
2.1.3 Ultrasonic Mixing
24(1)
2.1.4 Magnetic Stirring
24(1)
2.1.5 Combination of Mechanical, Ultrasonic, and Magnetic Stirring
25(1)
2.1.6 Melt Blending
25(1)
2.1.7 Effect of Fictionalization and Grafting
26(1)
2.1.8 Solution Mixing
27(1)
2.2 Fabrication
28(6)
2.2.1 Introduction
28(1)
2.2.2 Hand Lay-up Method
29(1)
2.2.3 Vacuum Resin Transfer Molding
30(1)
2.2.4 Filament Winding
31(2)
2.2.5 Pultrusion
33(1)
2.3 Characterization of Nanocomposites
34(8)
2.3.1 Introduction
34(1)
2.3.2 X-Ray Diffraction
34(1)
2.3.3 Electron Microscopy (SEM, TEM)
35(3)
2.3.4 Infrared and Raman Spectroscopy
38(2)
2.3.5 X-Ray Photoelectron Spectroscopy
40(1)
2.3.6 Brunauer-Emmett-Teller
41(1)
2.4 Mechanical Properties
42(4)
2.4.1 Introduction
42(1)
2.4.2 Tensile Test
42(2)
2.4.3 FlexuralTest
44(1)
2.4.4 Impact Test
44(1)
2.4.5 Shear and Fatigue Test
45(1)
2.5 Electrical Properties
46(1)
2.6 Thermal Properties
47(6)
2.6.1 Introduction
47(1)
2.6.2 Thermal Gravimetric Analysis
48(1)
2.6.3 Differential Scanning Calorimetry
49(1)
2.6.4 Thermal Conductivity
50(2)
2.6.5 Flame Retardancy
52(1)
2.7 Biodegradability
53(1)
References
54(9)
3 Theory Behind the Improvement of Mechanical Properties through Nanofillers
63(28)
3.1 Introduction
63(2)
3.2 Organic Nanofillers
65(2)
3.3 Inorganic Nanofillers
67(14)
3.3.1 Metal-Based Nanofillers
67(1)
3.3.2 Metal Oxide-Based Inorganic Nanofillers
68(1)
3.3.3 Gold Nanofillers
69(2)
3.3.4 Silver Nanofillers
71(1)
3.3.4.1 Synthesis of AgNFs
72(1)
3.3.5 Carbon-Based
72(1)
3.3.6 Fullerenes
72(2)
3.3.7 Graphene
74(1)
3.3.8 Carbon Nanotubes
75(2)
3.3.8.1 Single-Walled Carbon Nanotubes
77(2)
3.3.8.2 Multiple-Walled Carbon Nanotubes
79(1)
3.3.8.3 Methods of CNTs Synthesis
79(1)
3.3.9 Carbon Nanofiber
80(1)
3.3.10 Carbon Black
80(1)
3.3.11 Quantum Dots
80(1)
3.3.12 Silica Nanofillers
80(1)
References
81(10)
4 Hydrothermal Behavior of Polymer Nanocomposites
91(22)
4.1 Diffusion Theory of Moisture Absorption
91(9)
4.1.1 Fick's Model
91(3)
4.1.2 Langmuirian Model
94(1)
4.1.3 Hindered Model
95(4)
4.1.4 Dual-Stage Model
99(1)
4.2 Factors Affecting Water Absorption
100(11)
4.2.1 Nanofiller
100(4)
4.2.2 Polymer
104(1)
4.2.3 Temperature
105(2)
4.2.4 Interface
107(3)
4.2.5 Environment
110(1)
References
111(2)
5 Hydrothermal Effect on Mechanical Properties of Organic Nanofillers Embedded FRP Composites
113(28)
5.1 Introduction
113(1)
5.2 Graphene
114(6)
5.3 Graphite
120(4)
5.4 Single-Walled Carbon Nanotubes
124(1)
5.5 Multi-Walled Carbon Nanotubes
125(7)
5.6 Synergistic Effect of Nanofillers
132(1)
References
133(8)
6 Hydrothermal Effect on Mechanical Properties of Inorganic Nanofillers Embedded FRP Composites
141(28)
6.1 Introduction
141(2)
6.2 SiO2
143(4)
6.3 Al2O3
147(6)
6.4 TiO2
153(5)
6.5 SiC
158(2)
6.6 CaCO3
160(2)
6.7 B.N
162(1)
6.8 Synergistic Effect of Nanofillers
163(1)
References
164(5)
7 Hydrothermal Effect on Mechanical Properties of Nanofillers Embedded Natural Fiber Reinforced Polymer Composites
169(26)
7.1 Introduction
169(1)
7.2 Natural Fiber Reinforced Composites
169(4)
7.3 Hydrothermal Effect
173(15)
7.3.1 Mechanical Properties
180(1)
7.3.1.1 Tensile Strength
180(1)
7.3.1.2 Flexural Strength
181(2)
7.3.2 Thermal Properties
183(2)
7.3.3 Wear Resistance
185(3)
References
188(7)
8 Hydrothermal Effect on the Mechanical Properties of Multiple Nanofillers Embedded Hybrid FRP Composites
195(12)
8.1 Introduction
195(1)
8.2 Organic-Organic Nanofillers
196(2)
8.3 Organic-Inorganic Nanofillers
198(3)
8.4 Inorganic-Inorganic Nanofillers
201(2)
References
203(4)
9 Future Prospective and Challenges
207(14)
Index 221
Ramesh Kumar Nayak, Bankim Chandra Ray, Dibyaranjan Rout, Kishore Kumar Mahato