Foreword |
|
xv | |
Preface |
|
xvii | |
Acknowledgments |
|
xix | |
Author |
|
xxi | |
Introduction |
|
xxiii | |
Chapter 1 Overview of Hyperspectral Remote Sensing |
|
1 | (30) |
|
1.1 Concepts of Imaging Spectroscopy |
|
|
1 | (7) |
|
|
1 | (1) |
|
1.1.2 Imaging Spectroscopy |
|
|
2 | (2) |
|
1.1.3 Hyperspectral Remote Sensing |
|
|
4 | (1) |
|
1.1.4 Differences between Hyperspectral and Multispectral Imaging |
|
|
5 | (1) |
|
1.1.5 Absorption Features and Diagnostic Spectral Features |
|
|
6 | (2) |
|
1.2 Development of Hyperspectral Remote Sensing |
|
|
8 | (3) |
|
1.3 Overview of Hyperspectral Remote Sensing Applications |
|
|
11 | (9) |
|
|
11 | (3) |
|
1.3.2 Vegetation and Ecosystems |
|
|
14 | (2) |
|
|
16 | (1) |
|
1.3.4 Coastal and Inland Waters |
|
|
17 | (1) |
|
1.3.5 Snow and Ice Hydrology |
|
|
18 | (1) |
|
1.3.6 Environmental Hazards |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.4 Perspective of Hyperspectral Remote Sensing |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
23 | (8) |
Chapter 2 Field Spectrometers and Plant Biology Instruments for HRS |
|
31 | (34) |
|
2.1 Non-Imaging Field Spectrometers |
|
|
31 | (18) |
|
|
31 | (2) |
|
2.1.2 Principles of Field Spectroscopy and General Guidelines on Field Techniques |
|
|
33 | (5) |
|
2.1.2.1 Principles of Field Spectroscopy |
|
|
33 | (4) |
|
2.1.2.2 General Guidelines on Field Technique |
|
|
37 | (1) |
|
2.1.3 Field Spectrometers |
|
|
38 | (11) |
|
2.1.3.1 ASD Field Spectroradiometers |
|
|
38 | (3) |
|
2.1.3.2 SVC (GER) Field Spectroradiometers |
|
|
41 | (3) |
|
2.1.3.3 Spectral Evolution Field Spectroradiometers |
|
|
44 | (1) |
|
2.1.3.4 SpectraScan Spectroradiometers |
|
|
45 | (1) |
|
2.1.3.5 Ocean Optical Spectrometers |
|
|
46 | (3) |
|
2.2 Plant Biology Instruments for HRS |
|
|
49 | (13) |
|
|
49 | (1) |
|
2.2.2 Plant Biology Instruments |
|
|
49 | (16) |
|
2.2.2.1 Instruments for Measuring Leaf Area and Leaf Area Index |
|
|
49 | (5) |
|
2.2.2.2 Instruments for Measuring Photosynthesis and fPAR |
|
|
54 | (4) |
|
2.2.2.3 Instruments for Measuring Chlorophyll Content |
|
|
58 | (4) |
|
|
62 | (1) |
|
|
62 | (3) |
Chapter 3 Imaging Spectrometers, Sensors, Systems, and Missions |
|
65 | (36) |
|
3.1 Working Principles of Imaging Spectrometry |
|
|
65 | (2) |
|
3.1.1 Whiskbroom Imaging Spectrometry |
|
|
65 | (2) |
|
3.1.2 Pushbroom Imaging Spectrometry |
|
|
67 | (1) |
|
3.2 Airborne Hyperspectral Sensors/Systems |
|
|
67 | (18) |
|
3.2.1 Advanced Airborne Hyperspectral Imaging Sensor (AAHIS) |
|
|
67 | (6) |
|
3.2.2 Airborne Imaging Spectrometer (AIS) |
|
|
73 | (1) |
|
3.2.3 Airborne Imaging Spectrometer for Different Applications (AISA) |
|
|
74 | (1) |
|
3.2.4 Advanced Solid-State Array Spectroradiometer (ASAS) |
|
|
74 | (1) |
|
3.2.5 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) |
|
|
75 | (1) |
|
3.2.6 Compact Airborne Spectrographic Imager (CASI) |
|
|
76 | (1) |
|
3.2.7 Compact High-Resolution Imaging Spectrograph Sensor (CHRISS) |
|
|
77 | (1) |
|
3.2.8 Digital Airborne Imaging Spectrometers (DAIS 7915, 16115) |
|
|
77 | (1) |
|
3.2.9 Fluorescence Line Imager (FLI) |
|
|
77 | (1) |
|
3.2.10 Hyperspectral Digital Imagery Collection Experiment (HYDICE) |
|
|
78 | (1) |
|
3.2.11 Hyperspectral Mapper (HyMap) |
|
|
79 | (1) |
|
3.2.12 HyperSpectral Cameras (HySpex) |
|
|
80 | (1) |
|
3.2.13 Infrared Imaging Spectrometer (ISM) |
|
|
80 | (1) |
|
3.2.14 Modular Airborne Imaging Spectrometer (MAIS) |
|
|
80 | (1) |
|
3.2.15 Modular Imaging Spectrometer Instrument (MISI) |
|
|
81 | (1) |
|
3.2.16 Multispectral Infrared Camera (MUSIC) |
|
|
81 | (1) |
|
|
81 | (1) |
|
3.2.18 Reflective Optics System Imaging Spectrometer (ROSIS) |
|
|
81 | (1) |
|
3.2.19 SWIR Full Spectrographic Imager (SFSI) |
|
|
82 | (1) |
|
3.2.20 Spatially Modulated Imaging Fourier Transform Spectrometer (SMIFTS) |
|
|
82 | (1) |
|
3.2.21 TRW Imaging Spectrometers (TRWIS) |
|
|
83 | (1) |
|
3.2.22 Variable Interference Filter Imaging Spectrometer (VIFIS) |
|
|
84 | (1) |
|
3.2.23 Wedge Imaging Spectrometer (WIS) |
|
|
84 | (1) |
|
3.3 Spaceborne Hyperspectral Sensors/Missions |
|
|
85 | (10) |
|
3.3.1 Advanced Responsive Tactically Effective Military Imaging Spectrometer (ARTEMIS), TacSat-3 Satellite |
|
|
86 | (1) |
|
3.3.2 Compact High-Resolution Imaging Spectrometer (CHRIS) PROBA Satellite |
|
|
86 | (3) |
|
3.3.3 Fourier Transform Hyperspectral Imager (FTHSI), MightySat II Satellite |
|
|
89 | (1) |
|
3.3.4 Global Imager (GLI), NASDA ADEOS-II Satellite |
|
|
89 | (1) |
|
3.3.5 HJ-A/HSI (Hyperspectral Imager, HJ-1A Satellite) |
|
|
89 | (1) |
|
3.3.6 Hyperion (Hyperspectral Imager, EO-1 Satellite) |
|
|
90 | (1) |
|
3.3.7 HySI (HyperSpectral Imager, IMS-1 Satellite) |
|
|
91 | (1) |
|
3.3.8 Medium-Resolution Imaging Spectrometer (MERIS), ESA ENVISAT Satellite |
|
|
91 | (1) |
|
3.3.9 Moderate-Resolution Imaging Spectroradiometer (MODIS), Terra/Aqua Satellites |
|
|
91 | (1) |
|
3.3.10 Environmental Mapping and Analysis Program (EnMAP) |
|
|
92 | (1) |
|
3.3.11 Fluorescence Explorer (FLEX) |
|
|
93 | (1) |
|
3.3.12 Hyperspectral Imager Suite (HISUI) |
|
|
93 | (1) |
|
3.3.13 Hyperspectral Infrared Imager (HyspIRI) |
|
|
94 | (1) |
|
3.3.14 Multisensor Microsatellite Imager (MSMI) |
|
|
94 | (1) |
|
3.3.15 Hyperspectral Precursor and Application Mission (PRISMA) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (5) |
Chapter 4 Hyperspectral Image Radiometric Correction |
|
101 | (62) |
|
|
101 | (2) |
|
|
103 | |
|
4.2.1 Atmospheric Refraction |
|
|
104 | (1) |
|
4.2.2 Atmospheric Scattering |
|
|
104 | (3) |
|
4.2.3 Atmospheric Absorption |
|
|
107 | (1) |
|
4.2.4 Atmospheric Transmittance |
|
|
108 | |
|
4.3 Correcting Radiometric Errors Induced by Sensors/Systems |
|
|
101 | (16) |
|
4.3.1 Introduction to Radiometric Errors Caused by Sensors/Systems |
|
|
109 | (2) |
|
|
111 | (3) |
|
4.3.3 Correcting Smile- and Keystone-Induced Errors |
|
|
114 | (3) |
|
4.4 Atmospheric Correction Methods |
|
|
117 | (30) |
|
4.4.1 Introduction to Atmospheric Correction |
|
|
117 | (2) |
|
4.4.2 Empirical/Statistical Methods |
|
|
119 | (5) |
|
4.4.2.1 The Empirical Line Calibration (ELC) |
|
|
119 | (4) |
|
4.4.2.2 Internal Average Reflectance (IAR) and Flat Field Correction (FFC) |
|
|
123 | (1) |
|
4.4.3 Radiative Transfer Methods |
|
|
124 | (21) |
|
4.4.3.1 Atmospheric Correction Now (ACORN) |
|
|
124 | (3) |
|
4.4.3.2 Atmospheric Correction (ATCOR) |
|
|
127 | (1) |
|
4.4.3.3 Atmosphere Removal (ATREM) |
|
|
128 | (3) |
|
4.4.3.4 Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) |
|
|
131 | (3) |
|
4.4.3.5 High-Accuracy Atmospheric Correction for Hyperspectral Data (HATCH) |
|
|
134 | (3) |
|
4.4.3.6 Imaging Spectrometer Data Analysis System (ISDAS) |
|
|
137 | (1) |
|
|
138 | (7) |
|
4.4.4 Relative Correction Methods |
|
|
145 | (2) |
|
4.5 Techniques for Estimating Atmospheric Water Vapor and Aerosols |
|
|
147 | (9) |
|
4.5.1 Atmospheric Water Vapor |
|
|
147 | (4) |
|
4.5.1.1 Narrow/Wide (N/W) Technique |
|
|
147 | (2) |
|
4.5.1.2 Continuum Interpolated Band Ratio (CIBR) |
|
|
149 | (1) |
|
4.5.1.3 Three-Band Ratioing (3BR) |
|
|
150 | (1) |
|
4.5.1.4 Linear Regression Ratio (LIRR) |
|
|
150 | (1) |
|
4.5.1.5 Atmospheric Pre-Corrected Differential Absorption (APAD) |
|
|
151 | (1) |
|
4.5.2 Atmospheric Aerosols |
|
|
151 | (13) |
|
4.5.2.1 Dark Dense Vegetation (DDV) Technique |
|
|
152 | (1) |
|
4.5.2.2 Aerosol Optical Thickness at 550 nm (AOT at 550 nm) |
|
|
153 | (3) |
|
|
156 | (1) |
|
|
157 | (6) |
Chapter 5 Hyperspectral Data Analysis Techniques |
|
163 | (66) |
|
|
163 | (1) |
|
5.2 Spectral Derivative Analysis |
|
|
164 | (1) |
|
5.3 Spectral Similarity Measures |
|
|
164 | (6) |
|
5.3.1 Cross-Correlogram Spectral Matching (CCSM) |
|
|
166 | (2) |
|
5.3.2 Spectral Angle Matching (SAM) |
|
|
168 | (1) |
|
5.3.3 Euclidian Distance (ED) |
|
|
169 | (1) |
|
5.3.4 Spectral Information Divergence (SID) |
|
|
169 | (1) |
|
5.4 Spectral Absorption Features and Wavelength Position Variables |
|
|
170 | (8) |
|
5.4.1 Four-Point Interpolation |
|
|
171 | (1) |
|
|
172 | (1) |
|
5.4.3 Lagrangian Technique |
|
|
172 | (2) |
|
|
174 | (2) |
|
5.4.5 Linear Extrapolation |
|
|
176 | (2) |
|
5.5 Spectral Vegetation Indices |
|
|
178 | (7) |
|
5.6 Hyperspectral Transformation and Feature Extraction |
|
|
185 | (11) |
|
5.6.1 Principal Components Analysis (PCA) |
|
|
185 | (1) |
|
5.6.2 Signal-to-Noise Ratio-Based Image Transforms |
|
|
186 | (3) |
|
5.6.2.1 Maximum Noise Fraction (MNF) Transform |
|
|
186 | (1) |
|
5.6.2.2 Noise-Adjusted Principal Component Transform |
|
|
187 | (2) |
|
5.6.3 Independent Component Analy'sis |
|
|
189 | (3) |
|
5.6.4 Canonical Discriminant Analysis (CDA) |
|
|
192 | (2) |
|
|
194 | (2) |
|
5.7 Spectral Mixture Analysis (SMA) |
|
|
196 | (10) |
|
5.7.1 Traditional Spectral Unmixing Modeling Techniques |
|
|
197 | (4) |
|
5.7.2 Artificial Neural Networks Solution to LSM |
|
|
201 | (1) |
|
5.7.3 Multiple End-Member Spectral Mixture Analysis (MESMA) |
|
|
201 | (1) |
|
5.7.4 Mixture-Tuned Matched Filtering Technique (MTMF) |
|
|
202 | (1) |
|
5.7.5 Constrained Energy Minimization (CEM) |
|
|
203 | (1) |
|
5.7.6 End-Member Extraction |
|
|
204 | (2) |
|
5.7.6.1 Pixel Purity Index (PPI) |
|
|
205 | (1) |
|
|
205 | (1) |
|
5.8 Hyperspectral Image Classifications |
|
|
206 | (12) |
|
5.8.1 Segment-Based Multispectral Classifiers |
|
|
207 | (3) |
|
5.8.2 Artificial Neural Networks (ANN) |
|
|
210 | (3) |
|
5.8.3 Support Vector Machines |
|
|
213 | (17) |
|
5.8.3.1 Linear SVM for a Separable Case |
|
|
213 | (2) |
|
5.8.3.2 Linear SVM for a Nonseparable Case |
|
|
215 | (1) |
|
5.8.3.3 Nonlinear SVM: Kernel Method |
|
|
216 | (1) |
|
5.8.3.4 SVMs for Multiclass Classification |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
219 | (10) |
Chapter 6 Hyperspectral Data Processing Software |
|
229 | (34) |
|
|
229 | (1) |
|
|
230 | (6) |
|
6.2.1 Atmospheric Correction |
|
|
230 | (2) |
|
6.2.2 Building a 3D Image Cube and Plotting Spectral Curve |
|
|
232 | (1) |
|
6.2.3 Data Transformation |
|
|
232 | (1) |
|
6.2.4 End-Member Determination and Extraction |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (1) |
|
6.2.7 Mapping and Discriminant Methods |
|
|
235 | (1) |
|
6.2.8 Vegetation Analysis and Suppression |
|
|
236 | (1) |
|
|
236 | (4) |
|
6.3.1 IMAGINE Spectral Analysis Workstation |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (2) |
|
6.3.5 Material Identification |
|
|
239 | (1) |
|
6.3.6 Atmospheric Adjustment |
|
|
239 | (1) |
|
|
240 | (2) |
|
6.4.1 Hyperspectral Signature Development |
|
|
240 | (2) |
|
6.4.2 Hyperspectral Image Classification |
|
|
242 | (1) |
|
6.4.3 Extraction of Absorption Features |
|
|
242 | (1) |
|
|
242 | (3) |
|
|
243 | (1) |
|
6.5.2 Atmospheric Correction |
|
|
243 | (1) |
|
6.5.3 Hyperspectral Unmixing and Mapping |
|
|
243 | (2) |
|
|
245 | (4) |
|
6.6.1 Hyperspectral Explorer Tool |
|
|
245 | (1) |
|
6.6.2 Atmospheric Correction |
|
|
245 | (1) |
|
6.6.3 Hyperspectral Image Transformation |
|
|
246 | (1) |
|
6.6.4 Hyperspectral Unmixing and Mapping |
|
|
247 | (2) |
|
6.7 Other Minor Software Tools and Programs for Processing Hyperspectral Data |
|
|
249 | (11) |
|
|
249 | (1) |
|
6.7.1.1 Set Smoothing Filter Width |
|
|
249 | (1) |
|
6.7.1.2 EZ-ID Quick Material Identification Tool |
|
|
249 | (1) |
|
6.7.1.3 Vegetation Indices |
|
|
250 | (1) |
|
6.7.2 Hyperspectral Image Processing and Analysis System (HIPAS) |
|
|
250 | (1) |
|
6.7.3 Imaging Spectrometer Data Analysis Systems (ISDAS) |
|
|
251 | (1) |
|
6.7.4 Integrated Software for Imagers and Spectrometers (ISIS) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
253 | (1) |
|
6.7.7 Optical Real-Time Adaptive Spectral Identification System (ORASIS) |
|
|
253 | (1) |
|
6.7.8 Processing Routines in IDL for Spectroscopic Measurements (PRISM) |
|
|
254 | (1) |
|
|
255 | (1) |
|
6.7.10 Spectrum Processing Routines (SPECPR) |
|
|
256 | (1) |
|
|
256 | (1) |
|
6.7.12 The Spectral Geologist (TSG) |
|
|
257 | (3) |
|
|
260 | (1) |
|
|
261 | (2) |
Chapter 7 Hyperspectral Applications in Geology and Soil Sciences |
|
263 | (62) |
|
|
263 | (2) |
|
7.2 Spectral Characteristics of Minerals/Rocks |
|
|
265 | (5) |
|
7.2.1 Spectral Absorption Characteristics Caused by the Electronic Processes |
|
|
265 | (3) |
|
7.2.1.1 Due to Crystal-Field Effects |
|
|
265 | (2) |
|
7.2.1.2 Due to Charge Transfer |
|
|
267 | (1) |
|
7.2.1.3 Due to Color Centers |
|
|
267 | (1) |
|
7.2.1.4 Due to Conduction Band Transitions |
|
|
268 | (1) |
|
7.2.2 Spectral Absorption Characteristics Caused by the Vibrational Processes |
|
|
268 | (1) |
|
7.2.2.1 Due to Molecular Water |
|
|
268 | (1) |
|
|
269 | (1) |
|
7.2.2.3 Due to Carbonate, Borate, and Phosphate |
|
|
269 | (1) |
|
7.2.3 Spectral Absorption Characteristics of Alteration Minerals |
|
|
269 | (1) |
|
7.3 Analytical Techniques and Methods in Geological Applications |
|
|
270 | (30) |
|
7.3.1 Spectral Absorption Feature Extraction in Spectra of Minerals |
|
|
271 | (6) |
|
7.3.2 Identifying and Mapping Minerals Using Hyperspectral Mineral Indices |
|
|
277 | (2) |
|
7.3.3 Identifying and Mapping Minerals Using Spectral Matching Methods |
|
|
279 | (2) |
|
|
280 | (1) |
|
|
281 | (1) |
|
7.3.4 Estimating and Mapping the Abundance of Minerals Using Spectral Unmixing Methods |
|
|
281 | (5) |
|
7.3.4.1 Linear Spectral Mixing (LSM) |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
7.3.5 Estimating and Mapping the Abundance of Minerals Using Spectral Modeling Methods |
|
|
286 | (6) |
|
7.3.6 Mapping Minerals Using Advanced Techniques and Methods |
|
|
292 | (8) |
|
|
292 | (1) |
|
|
293 | (2) |
|
|
295 | (5) |
|
7.4 Hyperspectral Applications in Soil Sciences |
|
|
300 | (8) |
|
7.4.1 Spectral Characteristics of Soils |
|
|
300 | (1) |
|
7.4.2 Review of Hyperspectral Applications in Soils |
|
|
301 | (7) |
|
7.4.2.1 Soil Degradation (Salinity, Erosion, and Deposition) |
|
|
301 | (3) |
|
7.4.2.2 Soil Organic Matter (SOM) and Soil Organic Carbon (SOC) |
|
|
304 | (1) |
|
|
305 | (1) |
|
7.4.2.4 Soil Contamination |
|
|
306 | (1) |
|
7.4.2.5 Soil Classification and Mapping |
|
|
307 | (1) |
|
7.5 Hyperspectral Applications in Geology: Case Studies |
|
|
308 | (9) |
|
7.5.1 Case I: Mapping Multiple Surficial Materials Using HyMap Data-Derived Absorption Features |
|
|
308 | (2) |
|
7.5.1.1 Study Area, HSI Data, and Image Preprocessing |
|
|
309 | (1) |
|
7.5.1.2 Mapping Methodology |
|
|
309 | (1) |
|
|
310 | (1) |
|
7.5.1.4 Concluding Remarks |
|
|
310 | (1) |
|
7.5.2 Case II: Mapping Surface Hydrothermal Alteration Minerals Using Airborne AVIRIS and Satellite Hyperion Imagery |
|
|
310 | (5) |
|
7.5.2.1 Study Area and Hyperspectral Data |
|
|
310 | (1) |
|
7.5.2.2 Mapping Methodology |
|
|
310 | (3) |
|
|
313 | (1) |
|
7.5.2.4 Concluding Remarks |
|
|
314 | (1) |
|
7.5.3 Case III: Mapping Volcanogenic Massive Sulfide Deposits Using HyMap Imagery |
|
|
315 | (11) |
|
7.5.3.1 Study Area and Hyperspectral Data |
|
|
315 | (1) |
|
7.5.3.2 Mapping Methodology |
|
|
315 | (1) |
|
|
315 | (2) |
|
7.5.3.4 Concluding Remarks |
|
|
317 | (1) |
|
|
317 | (1) |
|
|
317 | (8) |
Chapter 8 Hyperspectral Applications to Vegetation |
|
325 | (64) |
|
|
325 | (1) |
|
8.2 Spectral Characteristics of Typical Green Plants |
|
|
326 | (11) |
|
8.2.1 Green Leaf Structure and Plant Spectral Reflectance Curve |
|
|
326 | (5) |
|
8.2.1.1 Visible Light Absorbed by Multiple Plant Pigments |
|
|
328 | (1) |
|
8.2.1.2 NIR Radiation Reflected by Multiscattering of Internal Cellular Structure |
|
|
328 | (3) |
|
8.2.1.3 MIR Energy Absorbed by Water and Other Biochemical Constituents |
|
|
331 | (1) |
|
8.2.2 Spectral Characteristics of Plant Biophysical Parameters |
|
|
331 | (3) |
|
8.2.2.1 Leaf Area Index, Specific Leaf Area, and Crown Closure |
|
|
331 | (2) |
|
8.2.2.2 Species and Composition |
|
|
333 | (1) |
|
8.2.2.3 Biomass, NPP, and fPAR or fAPAR |
|
|
334 | (1) |
|
8.2.3 Spectral Characteristics of Plant Biochemical Parameters |
|
|
334 | (3) |
|
8.2.3.1 Pigments: Chlorophylls, Carotenoids, and Anthocyanins |
|
|
335 | (1) |
|
8.2.3.2 Nutrients: N, P, and K |
|
|
335 | (1) |
|
8.2.3.3 Leaf Water Content |
|
|
336 | (1) |
|
8.2.3.4 Other Biochemicals: Lignin, Cellulose, Pectin, and Protein |
|
|
336 | (1) |
|
8.3 Analytical Techniques and Methods Needed in Vegetation Applications |
|
|
337 | (19) |
|
8.3.1 Plant Spectral Derivative Analysis |
|
|
337 | (4) |
|
8.3.2 Plant Spectral Absorption Feature and Wavelength Position Variable Analysis |
|
|
341 | (1) |
|
8.3.3 Spectral Vegetation Index Analysis |
|
|
342 | (2) |
|
8.3.4 Plant Spectral Unmixing Analysis |
|
|
344 | (1) |
|
8.3.5 Plant Spectral Matching Analysis |
|
|
344 | (1) |
|
8.3.6 Plant Spectral Classification Analysis |
|
|
345 | (1) |
|
8.3.7 Empirical/Statistical Analysis Methods |
|
|
346 | (3) |
|
8.3.8 Physically Processing-Based Modeling Methods |
|
|
349 | (1) |
|
8.3.9 Bioparameter Mapping Methods |
|
|
350 | (6) |
|
8.4 Estimation of Biophysical Parameters |
|
|
356 | (8) |
|
8.4.1 Plant Canopy LAI, SLA, and Crown Closure |
|
|
356 | (3) |
|
8.4.2 Plant Species and Composition |
|
|
359 | (2) |
|
8.4.3 Plant Biomass, NPP, fPAR or fAPAR |
|
|
361 | (3) |
|
8.5 Estimation of Biochemical Parameters |
|
|
364 | (10) |
|
8.5.1 Plant Pigments: Chls, Cars, and Anths |
|
|
364 | (3) |
|
8.5.2 Plant Nutrients: N, P, and K |
|
|
367 | (3) |
|
8.5.3 Leaf and Canopy Water Content |
|
|
370 | (2) |
|
8.5.4 Other Plant Biochemicals: Lignin, Cellulose, and Protein |
|
|
372 | (2) |
|
|
374 | (1) |
|
|
375 | (14) |
Chapter 9 Hyperspectral Applications to Environments |
|
389 | (62) |
|
|
389 | (1) |
|
9.2 Estimation of Atmospheric Parameters |
|
|
389 | (16) |
|
|
391 | (7) |
|
|
398 | (2) |
|
|
400 | (3) |
|
9.2.4 Carbon Dioxide (CO2) |
|
|
403 | (2) |
|
9.3 Snow and Ice Hydrology |
|
|
405 | (5) |
|
9.4 Coastal Environments and Inland Waters |
|
|
410 | (18) |
|
|
411 | (6) |
|
9.4.2 Coastal Environments |
|
|
417 | (11) |
|
9.5 Environmental Hazards and Disasters |
|
|
428 | (5) |
|
9.5.1 Mining Wastes and Tailings |
|
|
428 | (2) |
|
|
430 | (2) |
|
9.5.3 Landslide Monitoring |
|
|
432 | (1) |
|
|
433 | (6) |
|
9.6.1 Spectral Properties of Urban Materials |
|
|
433 | (1) |
|
9.6.2 Urban Materials and LULC Types |
|
|
434 | (5) |
|
9.6.3 Urban Thermal Environment |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
440 | (11) |
Index |
|
451 | |