Atjaunināt sīkdatņu piekrišanu

E-grāmata: Identification of Continuous-Time Systems: Linear and Robust Parameter Estimation

(Expedia Group, Greater Seattle Area, WA, USA),
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Models of dynamical systems are required for various purposes in the field of systems and control. The models are handled either in discrete time (DT) or in continuous time (CT). Physical systems give rise to models only in CT because they are based on physical laws which are invariably in CT. In system identification, indirect methods provide DT models which are then converted into CT. Methods of directly identifying CT models are preferred to the indirect methods for various reasons. The direct methods involve a primary stage of signal processing, followed by a secondary stage of parameter estimation. In the primary stage, the measured signals are processed by a general linear dynamic operationcomputational or realized through prefilters, to preserve the system parameters in their native CT formand the literature is rich on this aspect.

In this book: Identification of Continuous-Time Systems-Linear and Robust Parameter Estimation, Allamaraju Subrahmanyam and Ganti Prasada Rao consider CT system models that are linear in their unknown parameters and propose robust methods of estimation. This book complements the existing literature on the identification of CT systems by enhancing the secondary stage through linear and robust estimation.

In this book, the authors











provide an overview of CT system identification,





consider Markov-parameter models and time-moment models as simple linear-in-parameters models for CT system identification,





bring them into mainstream model parameterization via basis functions,





present a methodology to robustify the recursive least squares algorithm for parameter estimation of linear regression models,





suggest a simple off-line error quantification scheme to show that it is possible to quantify error even in the absence of informative priors, and





indicate some directions for further research.

This modest volume is intended to be a useful addition to the literature on identifying CT systems.
List of Figures
vii
List of Tables
ix
Preface xi
Acknowledgments xv
Authors xvii
List of Abbreviations
xxi
1 Introduction and Overview
1(16)
1.1 Background
1(2)
1.2 Introduction
3(1)
1.3 Role of Model Parameterizations in System Identification
4(9)
1.3.1 Poisson Moment Functional Approach
6(1)
1.3.2 Integral Equation Approach
6(2)
1.3.3 Biased Estimation
8(1)
1.3.4 Reducible Models (for Multivariable Systems)
8(1)
1.3.5 Distribution of Estimation Errors
9(4)
1.4 Error Quantification: An Engineering Necessity
13(4)
2 Markov Parameter Models
17(26)
2.1 Introduction
17(1)
2.2 Markov Parameter Models
18(7)
2.2.1 Generalizations
19(1)
2.2.2 Choice of λ
20(3)
2.2.3 Markov Parameter Estimation
23(1)
2.2.4 Identification of Structure
24(1)
2.3 Finitization of the Markov Parameter Sequence
25(3)
2.3.1 Controller Form Realization
25(3)
2.4 Identifiability Conditions
28(4)
2.5 Convergence Analysis of the Algorithm
32(4)
2.6 Illustrative Examples
36(5)
2.7 Summary and Conclusions
41(2)
3 Time Moment Models
43(20)
3.1 Introduction
43(1)
3.2 Time Moment Models
44(3)
3.3 Finitization of Time-Moment Sequence
47(4)
3.3.1 Implementation Issues
48(3)
3.4 Illustrative Examples
51(3)
3.5 Choice of Basis of Parameterization
54(7)
3.6 Summary and Conclusions
61(2)
4 Robust Parameter Estimation
63(18)
4.1 Introduction
63(1)
4.2 Problem Description
64(3)
4.3 Solution to the Suboptimal Problem
67(9)
4.4 Bounds on Parameter Errors
76(2)
4.5 Summary and Conclusions
78(3)
5 Error Quantification
81(14)
5.1 Introduction
81(5)
5.1.1 Role of Priors
83(2)
5.1.2 A Plausible Philosophy
85(1)
5.1.3
Chapter Layout
86(1)
5.2 Robust Parameter Estimation
86(1)
5.3 Quantification of Parameter Errors
87(3)
5.4 Illustrative Examples
90(2)
5.5 Conclusions
92(3)
6 Conclusions
95(4)
6.1 Linear Model Parameterizations for System Identification
95(1)
6.2 Robust Estimation
96(1)
6.3 Error Quantification
97(2)
Bibliography 99(14)
Subject Index 113(4)
Author Index 117
Allamaraju Subrahmanyam, Ganti Prasada Rao