Atjaunināt sīkdatņu piekrišanu

E-grāmata: Illustrated Introduction to Topology and Homotopy

(University of Manitoba, Winnipeg, Canada)
  • Formāts: 485 pages
  • Izdošanas datums: 24-Mar-2015
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040072295
  • Formāts - EPUB+DRM
  • Cena: 131,49 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 485 pages
  • Izdošanas datums: 24-Mar-2015
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040072295

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An Illustrated Introduction to Topology and Homotopy explores the beauty of topology and homotopy theory in a direct and engaging manner while illustrating the power of the theory through many, often surprising, applications. This self-contained book takes a visual and rigorous approach that incorporates both extensive illustrations and full proofs.

The first part of the text covers basic topology, ranging from metric spaces and the axioms of topology through subspaces, product spaces, connectedness, compactness, and separation axioms to Urysohn’s lemma, Tietze’s theorems, and Stone-Cech compactification. Focusing on homotopy, the second part starts with the notions of ambient isotopy, homotopy, and the fundamental group. The book then covers basic combinatorial group theory, the Seifert-van Kampen theorem, knots, and low-dimensional manifolds. The last three chapters discuss the theory of covering spaces, the Borsuk-Ulam theorem, and applications in group theory, including various subgroup theorems.

Requiring only some familiarity with group theory, the text includes a large number of figures as well as various examples that show how the theory can be applied. Each section starts with brief historical notes that trace the growth of the subject and ends with a set of exercises.

Recenzijas

" reflects interesting aspects and will find its readers."Zentralblatt MATH, 1323

" an ideal college or university textbook and an invaluable addition to academic library mathematical studies reference collections." Library Bookwatch, May 2015

Preface xi
Acknowledgment xv
PART 1 Topology
Chapter 1 Sets, Numbers, and Cardinals
3(14)
1.1 Sets And Numbers
3(6)
1.2 Sets And Cardinal Numbers
9(3)
1.3 Axiom Of Choice And Equivalent Statements
12(5)
Chapter 2 Metric Spaces: Definition, Examples, and Basics
17(16)
2.1 Metric Spaces: Definition And Examples
17(6)
2.2 Metric Spaces: Basics
23(10)
Chapter 3 Topological Spaces: Definition and Examples
33(38)
3.1 The Definition And Some Simple Examples
33(6)
3.2 Some Basic Notions
39(9)
3.3 Bases
48(9)
3.4 Dense And Nowhere Dense Sets
57(4)
3.5 Continuous Mappings
61(10)
Chapter 4 Subspaces, Quotient Spaces, Manifolds, and CW-Complexes
71(30)
4.1 Subspaces
71(4)
4.2 Quotient Spaces
75(6)
4.3 The Gluing Lemma, Topological Sums, And Some Special Quotient Spaces
81(9)
4.4 Manifolds And Cw-Complexes
90(11)
Chapter 5 Products of Spaces
101(20)
5.1 Finite Products Of Spaces
101(9)
5.2 Infinite Products Of Spaces
110(7)
5.3 Box Topology
117(4)
Chapter 6 Connected Spaces and Path Connected Spaces
121(32)
6.1 Connected Spaces: Definition And Basic Facts
121(7)
6.2 Properties Of Connected Spaces
128(5)
6.3 Path Connected Spaces
133(6)
6.4 Path Connected Spaces: More Properties And Related Matters
139(8)
6.5 Locally Connected And Locally Path Connected Spaces
147(6)
Chapter 7 Compactness and Related Matters
153(32)
7.1 Compact Spaces: Definition
153(6)
7.2 Properties Of Compact Spaces
159(6)
7.3 Compact, Lindelof, And Countably Compact Spaces
165(5)
7.4 Bolzano, Weierstrass, And Lebesgue
170(3)
7.5 Compactification
173(6)
7.6 Infinite Products Of Spaces And Tychonoff Theorem
179(6)
Chapter 8 Separation Properties
185(14)
8.1 The Hierarchy Of Separation Properties
185(6)
8.2 Regular Spaces And Normal Spaces
191(4)
8.3 Normal Spaces And Subspaces
195(4)
Chapter 9 Urysohn, Tietze, and Stone--Cech
199(18)
9.1 The Urysohn Lemma
199(6)
9.2 The Tietze Extension Theorem
205(4)
9.3 Stone--CEch Compactification
209(8)
PART 2 Homotopy
Chapter 10 Isotopy and Homotopy
217(30)
10.1 Isotopy And Ambient Isotopy
218(10)
10.2 Homotopy
228(4)
10.3 Homotopy And Paths
232(6)
10.4 The Fundamental Group Of A Space
238(9)
Chapter 11 The Fundamental Group of a Circle and Applications
247(22)
11.1 The Fundamental Group Of A Circle
247(8)
11.2 Brouwer Fixed Point Theorem And The Fundamental Theorem Of Algebra
255(6)
11.3 The Jordan Curve Theorem
261(8)
Chapter 12 Combinatorial Group Theory
269(22)
12.1 Group Presentations
269(6)
12.2 Free Groups, Tietze, Dehn
275(8)
12.3 Free Products And Free Products With Amalgamation
283(8)
Chapter 13 Seifert--van Kampen Theorem and Applications
291(42)
13.1 Seifert--Van Kampen Theorem
291(8)
13.2 Seifert--Van Kampen Theorem: Examples
299(11)
13.3 Seifert--Van Kampen Theorem And Knots
310(9)
13.4 Torus Knots And Alexander's Horned Sphere
319(8)
13.5 Links
327(6)
Chapter 14 On Classifying Manifolds and Related Topics
333(38)
14.1 1-Manifolds
333(3)
14.2 Compact 2-Manifolds: Preliminary Results
336(7)
14.3 Compact 2-Manifolds: Classification
343(13)
14.4 Regarding Classification Of Cw-Complexes And Higher Dimensional Manifolds
356(9)
14.5 Higher Homotopy Groups: A Brief Overview
365(6)
Chapter 15 Covering Spaces, Part 1
371(26)
15.1 Covering Spaces: Definition, Examples, And Preliminaries
371(4)
15.2 Lifts Of Paths
375(4)
15.3 Lifts Of Mappings
379(9)
15.4 Covering Spaces And Homotopy
388(9)
Chapter 16 Covering Spaces, Part 2
397(32)
16.1 Covering Spaces And Sheets
397(3)
16.2 Covering Transformations
400(5)
16.3 Covering Spaces And Groups Acting Properly Discontinuously
405(10)
16.4 Covering Spaces: Existence
415(6)
16.5 The Borsuk--Ulam Theorem
421(8)
Chapter 17 Applications in Group Theory
429(26)
17.1 Cayley Graphs And Covering Spaces
429(7)
17.2 Topographs And Presentations
436(6)
17.3 Subgroups Of Free Groups
442(6)
17.4 Two Subgroup Theorems
448(7)
Bibliography 455(4)
List Of Symbols 459(4)
Index 463
Sasho Kalajdzievski