Atjaunināt sīkdatņu piekrišanu

Image Processing and Machine Learning, Volume 2: Advanced Topics in Image Analysis and Machine Learning [Hardback]

  • Formāts: Hardback, 224 pages, height x width: 234x156 mm, weight: 462 g, 10 Tables, black and white; 9 Line drawings, color; 172 Line drawings, black and white; 36 Halftones, color; 99 Halftones, black and white; 45 Illustrations, color; 271 Illustrations, black and white
  • Izdošanas datums: 16-Feb-2024
  • Izdevniecība: Chapman & Hall/CRC
  • ISBN-10: 1032660325
  • ISBN-13: 9781032660325
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 109,33 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 224 pages, height x width: 234x156 mm, weight: 462 g, 10 Tables, black and white; 9 Line drawings, color; 172 Line drawings, black and white; 36 Halftones, color; 99 Halftones, black and white; 45 Illustrations, color; 271 Illustrations, black and white
  • Izdošanas datums: 16-Feb-2024
  • Izdevniecība: Chapman & Hall/CRC
  • ISBN-10: 1032660325
  • ISBN-13: 9781032660325
Citas grāmatas par šo tēmu:

Image processing and machine learning are used in conjunction to analyze and understand images. Where image processing is used to pre-process images using techniques such as filtering, segmentation, and feature extraction, machine learning algorithms are used to interpret the processed data through classification, clustering, and object detection. This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches.

Divided into two volumes, this second installment explores the more advanced concepts and techniques in image processing, including morphological filters, color image processing, image matching, feature-based segmentation utilizing the mean shift algorithm, and the application of singular value decomposition for image compression. This second volume also incorporates several important machine learning techniques applied to image processing, building on the foundational knowledge introduced in Volume 1.

Written with instructors and students of image processing in mind, this book’s intuitive organization also contains appeal for app developers and engineers.



This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches.

Preface Volume II. 1 Morphological Operations. 2 Color Images. 3
Geometric Operations in Images. 4 Comparison and Recognition of Images. 5
Mean-Shift Algorithm for Segmentation. 6 Singular Value Decomposition in
Image Processing. Index.
Erik Cuevas, Alma Nayeli Rodrķguez