Atjaunināt sīkdatņu piekrišanu

E-grāmata: Image Sensors and Signal Processing for Digital Still Cameras

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 236,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Shrinking pixel sizes along with improvements in image sensors, optics, and electronics have elevated DSCs to levels of performance that match, and have the potential to surpass, that of silver-halide film cameras. Image Sensors and Signal Processing for Digital Still Cameras captures the current state of DSC image acquisition and signal processing technology and takes an all-inclusive look at the field, from the history of DSCs to future possibilities.

The first chapter outlines the evolution of DSCs, their basic structure, and their major application classes. The next few chapters discuss high-quality optics that meet the requirements of better image sensors, the basic functions and performance parameters of image sensors, and detailed discussions of both CCD and CMOS image sensors. The book then discusses how color theory affects the uses of DSCs, presents basic image processing and camera control algorithms and examples of advanced image processing algorithms, explores the architecture and required performance of signal processing engines, and explains how to evaluate image quality for each component described. The book closes with a look at future technologies and the challenges that must be overcome to realize them.

With contributions from many active DSC experts, Image Sensors and Image Processing for Digital Still Cameras offers unparalleled real-world coverage and opens wide the door for future innovation.

Recenzijas

"This book is on the basic foundations of digital still cameras It includes both the theory and the concepts of both the hardware being used and the software that ties everything together Dr. Nakamura has gotten a group of people from various companies to write chapters on their own area of expertise. [ These companies are] a who's who of the digital camera field including: Konica Minolta, Canon, Olympus, Fuji, and various specialized companies" -Books-On-Line

Digital Still Cameras at a Glance
1(20)
Kenji Toyoda
What Is a Digital Still Camera?
2(1)
History of Digital Still Cameras
3(7)
Early Concepts
3(1)
Sony Mavica
4(1)
Still Video Cameras
5(2)
Why Did the Still Video System Fail?
7(1)
Dawn of Digital Still Cameras
8(1)
Casio QV-10
9(1)
The Pixel Number War
10(1)
Variations of Digital Still Cameras
10(6)
Point-and-Shoot Camera Type
10(3)
SLR Type
13(1)
Camera Back Type
14(1)
Toy Cameras
14(1)
Cellular Phones with Cameras
15(1)
Basic Structure of Digital Still Cameras
16(2)
Typical Block Diagram of a Digital Still Camera
16(1)
Optics
16(1)
Imaging Devices
17(1)
Analog Circuit
17(1)
Digital Circuit
17(1)
System Control
17(1)
Applications of Digital Still Cameras
18(3)
Newspaper Photographs
18(1)
Printing Press
18(1)
Network Use
19(1)
Other Applications
19(2)
Optics in Digital Still Cameras
21(32)
Takeshi Koyama
Optical System Fundamentals and Standards for Evaluating Optical Performance
22(9)
Optical System Fundamentals
22(5)
Modulation Transfer Function (MTF) and Resolution
27(3)
Aberration and Spot Diagrams
30(1)
Characteristics of DSC Imaging Optics
31(7)
Configuration of DSC Imaging Optics
32(1)
Depth of Field and Depth of Focus
32(2)
Optical Low-Pass Filters
34(2)
The Effects of Diffraction
36(2)
Important Aspects of Imaging Optics Design for DSCs
38(11)
Sample Design Process
38(2)
Freedom of Choice in Glass Materials
40(1)
Making Effective Use of Aspherical Lenses
41(2)
Coatings
43(3)
Suppressing Fluctuations in the Angle of Light Exiting from Zoom Lenses
46(1)
Considerations of the Mass-Production Process in Design
47(2)
DSC Imaging Lens Zoom Types and Their Applications
49(2)
Video Zoom Type
49(1)
Multigroup Moving Zooms
50(1)
Short Zooms
50(1)
Conclusion
51(2)
References
51(2)
Basics of Image Sensors
53(42)
Junichi Nakamura
Functions of an Image Sensor
55(6)
Photoconversion
55(1)
Charge Collection and Accumulation
56(1)
Scanning of an Imaging Array
56(1)
Charge Transfer and X--Y Address
56(3)
Interlaced Scan and Progressive Scan
59(1)
Charge Detection
59(1)
Conversion Gain
60(1)
Photodetector in a Pixel
61(5)
Fill Factor
61(1)
Color Filter Array
62(1)
Microlens Array
63(1)
Reflection at the SiO2/Si Interface
64(1)
Charge Collection Efficiency
65(1)
Full-Well Capacity
66(1)
Noise
66(12)
Noise in Image Sensors
66(1)
FPN
67(1)
Dark Current
68(4)
Shading
72(1)
Temporal Noise
72(1)
Thermal Noise
73(1)
Shot Noise
74(1)
1/f Noise
74(1)
Temporal Noise in Image Sensors
74(3)
Input Referred Noise and Output Referred Noise
77(1)
Smear and Blooming
77(1)
Image Lag
77(1)
Photoconversion Characteristics
78(7)
Quantum Efficiency and Responsivity
78(1)
Mechanics of Photoconversion Characteristics
79(1)
Dynamic Range and Signal-to-Noise Ratio
79(2)
Estimation of Quantum Efficiency
81(1)
Estimation of Conversion Gain
81(1)
Estimation of Full-Well Capacity
82(1)
Noise Equivalent Exposure
83(1)
Linearity
83(1)
Crosstalk
83(1)
Sensitivity and SNR
84(1)
How to Increase Signal-to-Noise Ratio
84(1)
Array Performance
85(3)
Modulation Transfer Function (MTF)
85(1)
MTF of Image Sensors, MTF Imager
86(1)
Optical Black Pixels and Dummy Pixels
87(1)
Optical Format and Pixel Size
88(2)
Optical Format
88(1)
Pixel Size Considerations
89(1)
CCD Image Sensor vs. CMOS Image Sensor
90(5)
References
90(5)
CCD Image Sensors
95(48)
Tetsuo Yamada
Basics of CCDs
95(15)
Concept of the Charge Coupled Device
95(2)
Charge Transfer Mechanism
97(2)
Surface Channel and Buried Channel
99(6)
Typical Structures and Operations (Two- and Four-Phase Clocking)
105(2)
Output Circuitries and Noise Reduction: Floating Diffusion Charge Detector and CDS Process
107(3)
Structures and Characteristics of CCD Image Sensor
110(12)
Frame Transfer CCD and Interline Transfer CCD
110(2)
P-Substrate Structure and P-Well Structure
112(2)
Antiblooming and Low-Noise Pixels (Photodiode and VCCD)
114(3)
CCD Image Sensor Characteristics
117(1)
Photoelectric Conversion Characteristics
117(2)
Smear and Blooming
119(1)
Dark Current Noise
119(1)
White Blemishes and Black Defects
120(1)
Charge Transfer Efficiency
120(1)
Operation and Power Dissipation
121(1)
DSC Applications
122(16)
Requirements from DSC Applications
122(1)
Interlace Scan and Progressive Scan
123(3)
Imaging Operation
126(3)
PIACCD (Super CCD)
129(3)
High-Resolution Still Picture and High-Frame-Rate Movie
132(5)
System Solution for Using CCD Image Sensors
137(1)
Future Prospects
138(5)
References
139(4)
CMOS Image Sensors
143(36)
Isao Takayanagi
Introduction to CMOS Image Sensors
144(9)
Concepts of CMOS Image Sensors
144(3)
Basic Architecture
147(1)
Pixel and Pixel Array
147(1)
X--Y Pixel Addressing
148(1)
Fixed Pattern Noise Suppression
148(1)
Output Stage
149(1)
Other Peripherals
149(1)
Pixel-Addressing and Signal-Processing Architectures
150(1)
Pixel Serial Readout Architecture
150(1)
Column Parallel Readout Architecture
150(1)
Pixel Parallel Readout Architecture
151(1)
Rolling Shutter and Global Shutter
151(1)
Power Consumption
151(2)
CMOS Active Pixel Technology
153(8)
PN Photodiode Pixels
153(1)
PN Photodiode Structure
154(1)
Photodiode Reset Noise (kTC noise)
154(1)
Hard Reset and Soft Reset
155(1)
Reset Noise Suppression in PN Photodiode Pixels
155(1)
Pinned Photodiode Pixels
156(2)
Low-Voltage Charge Transfer
158(1)
Boosting
158(1)
Simplification of Pixel Configuration
158(1)
P- and N-Type Substrates
159(1)
Other Pixel Structures for Large-Format, High-Resolution CMOS Image Sensors
160(1)
LBCAST
161(1)
Vertical Integration Photodiode Pixel
161(1)
Signal Processing and Noise Behavior
161(7)
Pixel Signal Readout and FPN Suppression Circuit
162(1)
Column Correlated Double Sampling (CDS) Scheme
162(1)
Differential Delta Sampling (DDS)
163(1)
Analog Front End
164(1)
Serial PGA and ADC
165(1)
Column Parallel PGA and ADC
165(1)
Noise in CMOS Image Sensors
165(1)
Pixel-to-Pixel Random Noise
166(1)
Row-Wise and Column-Wise Noise
167(1)
Shading
167(1)
Smear and Blooming
168(1)
CMOS Image Sensors for DSC Applications
168(7)
On-Chip Integration vs. Classes of DSC Products
168(1)
Toy Cameras
168(1)
Middle-Class Compact DSCs
169(1)
Digital SLR Cameras
169(1)
Operation Sequence for Capturing Still Images
169(1)
Synchronization of Rolling Reset and Mechanical Shutter
170(1)
Synchronization of Global Reset and Mechanical Shutter
170(1)
Electronic Global Shutter
171(1)
Movie and AE/AF Modes
172(1)
Subresolution Readout
173(1)
Pixel Binning
173(1)
Mode Change and Dead Frames
174(1)
Future Prospects of CMOS Image Sensors for DSC Applications
175(4)
References
176(3)
Evaluation of Image Sensors
179(26)
Toyokazu Mizoguchi
What Is Evaluation of Image Sensors?
180(1)
Purposes of Evaluation
180(1)
Evaluation Parameters for Image Quality and an Image Sensor
180(1)
Environment for Image Sensor Evaluation
181(1)
Evaluation Environment
181(5)
Evaluation of an Image Sensor and Evaluation Environment
181(1)
Basic Configuration of Image Sensor Evaluation Environment
181(1)
Light Source (Light Box, Pulsed LED Light Source, High-Irradiance Light Source)
182(1)
Imaging Lens
183(1)
Optical Filters (Color Conversion Filters, Band-Pass Filters, IR-Cut Filters)
183(1)
Jig for Alignment of Image Sensor's Position (x, y, z, Azimuth, Rotation)
183(1)
Temperature Control
183(1)
Evaluation Board
184(1)
Image Acquisition Board and PC
184(1)
Evaluation/Analysis Software
185(1)
Preparation
185(1)
Measurement of Light Intensity
185(1)
Adjustment of Optical Axis
186(1)
Evaluation Methods
186(19)
Photoconversion Characteristics
186(3)
Sensitivity
189(1)
Linearity
189(1)
Saturation Characteristic
189(1)
Spectral Response
190(3)
Angular Response
193(1)
Dark Characteristics
194(1)
Average Dark Current
194(1)
Temporal Noise at Dark
195(2)
FPN at Dark (DSNU)
197(1)
Illuminated Characteristics
198(1)
Temporal Noise under Illumination
198(1)
Conversion Factor
198(1)
FPN under Illumination (PRNU)
198(1)
Smear Characteristics
199(1)
Resolution Characteristics
200(1)
Image Lag Characteristics
201(1)
Defects
201(1)
Reproduced Images of Natural Scenes
202(3)
Color Theory and Its Application to Digital Still Cameras
205(18)
Po-Chieh Hung
Color Theory
206(6)
The Human Visual System
206(1)
Color-Matching Functions and Tristimulus Values
206(1)
Chromaticity and Uniform Color Space
207(3)
Color Difference
210(1)
Light Source and Color Temperature
211(1)
Camera Spectral Sensitivity
212(2)
Characterization of a Camera
214(1)
White Balance
215(3)
White Point
215(1)
Color Conversion
216(1)
Chromatic Adaptation
216(1)
Color Constancy
217(1)
Conversion for Display (Color Management)
218(2)
Colorimetric Definition
218(1)
Image State
219(1)
Profile Approach
220(1)
Summary
220(3)
References
221(2)
Image-Processing Algorithms
223(32)
Kazuhiro Sato
Basic Image-Processing Algorithms
224(14)
Noise Reduction
225(1)
Offset Noise
225(1)
Pattern Noise
226(1)
Aliasing Noise
226(1)
Color Interpolation
226(2)
Rectangular Grid Sampling
228(1)
Quincunx Grid Sampling
229(1)
Color Interpolation
229(3)
Color Correction
232(1)
RGB
232(1)
YCbCr
232(1)
Tone Curve/Gamma Curve
233(2)
Filter Operation
235(1)
FIR and IIR Filters
236(1)
Unsharp Mask Filter
237(1)
Camera Control Algorithm
238(10)
Auto Exposure, Auto White Balance
238(1)
Auto Focus
239(1)
Principles of Focus Measurement Methods
239(1)
Digital Integration
240(1)
Viewfinder and Video Mode
241(1)
Data Compression
242(1)
Data Storage
243(1)
Zoom, Resize, Clipping of Image
243(1)
Electronic Zoom
243(3)
Resize
246(1)
Clipping, Cropping
247(1)
Advanced Image Processing: How to Obtain Improved Image Quality
248(7)
Chroma Clipping
248(1)
Advanced Color Interpolation
248(3)
Lens Distortion Correction
251(1)
Lens Shading Correction
251(1)
References
252(3)
Image-Processing Engines
255(22)
Seiichiro Watanabe
Key Characteristics of an Image-Processing Engine
257(5)
Imaging Functions
257(1)
Feature Flexibility
257(1)
Imaging Performance
258(1)
Frame Rate
258(3)
Semiconductor Costs
261(1)
Power Consumption
261(1)
Time-to-Market Considerations
261(1)
Imaging Engine Architecture Comparison
262(4)
Image-Processing Engine Architecture
262(1)
General-Purpose DSP vs. Hardwired ASIC
263(1)
Feature Flexibility
263(1)
Frame Rate
264(1)
Power Consumption
265(1)
Time-to-Market Considerations
265(1)
Conclusion
266(1)
Analog Front End (AFE)
266(5)
Correlated Double Sampling (CDS)
266(1)
Optical Black Level Clamp
267(1)
Analog-to-Digital Conversion (ADC)
267(2)
AFE Device Example
269(2)
Digital Back End (DBE)
271(1)
Features
272(1)
System Components
272(1)
Future Design Directions
272(5)
Trends of Digital Cameras
272(2)
Analog Front End
274(1)
Digital Back End
275(1)
References
276(1)
Evaluation of Image Quality
277(28)
Hideaki Yoshida
What Is Image Quality?
278(1)
General Items or Parameters
278(9)
Resolution
278(1)
Frequency Response
279(1)
Noise
280(2)
Gradation (Tone Curve, Gamma Characteristic)
282(2)
Dynamic Range
284(1)
Color Reproduction
285(1)
Uniformity (Unevenness, Shading)
286(1)
Detailed Items or Factors
287(15)
Image Sensor-Related Matters
287(1)
Aliasing (Moire)
287(2)
Image Lag, Sticking
289(1)
Dark Current
289(1)
Pixel Defect
289(1)
Blooming/Smear
290(1)
White Clipping/Lack of Color/Toneless Black
291(1)
Spatial Random Noise/Fixed Pattern Noise
292(1)
Thermal Noise/Shot Noise
292(1)
Lens-Related Factors
293(1)
Flare, Ghost Image
293(1)
Geometric Distortion
294(1)
Chromatic Aberration
294(1)
Depth of Field
295(1)
Perspective
296(1)
Signal Processing-Related Factors
297(1)
Quantization Noise
297(1)
Compression Noise
298(1)
Power Line Noise, Clock Noise
298(1)
System Control-Related Factors
299(1)
Focusing Error
299(1)
Exposure Error
299(1)
White Balance Error
300(1)
Influence of Flicker Illumination
300(1)
Flash Light Effects (Luminance Nonuniformity/White Clipping/Bicolor Illumination)
300(1)
Other Factors: Hints on Time and Motion
301(1)
Adaptation
301(1)
Camera Shake, Motion Blur
301(1)
Jerkiness Interference
302(1)
Temporal Noise
302(1)
Standards Relating to Image Quality
302(3)
Some Thoughts on Future Digital Still Cameras
305(10)
Eric R. Fossum
The Future of DSC Image Sensors
305(6)
Future High-End Digital SLR Camera Sensors
306(2)
Future Mainstream Consumer Digital Camera Sensors
308(1)
A Digital-Film Sensor
309(2)
Some Future Digital Cameras
311(4)
References
314(1)
Appendix A Number of Incident Photons per Lux with a Standard Light Source 315(4)
Junichi Nakamura
Appendix B Sensitivity and ISO Indication of an Imaging System 319(4)
Hideaki Yoshida
Index 323


Nakamura, Junichi