Atjaunināt sīkdatņu piekrišanu

E-grāmata: Implementing Full Duplexing for 5G

  • Formāts: 257 pages
  • Izdošanas datums: 31-Jan-2020
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630816964
  • Formāts - PDF+DRM
  • Cena: 125,10 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 257 pages
  • Izdošanas datums: 31-Jan-2020
  • Izdevniecība: Artech House Publishers
  • ISBN-13: 9781630816964

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This exciting new book examines the feasibility of using a method of doubling the capacity of cellular networks by simultaneously transmitting and receiving signals at the same frequency, a process known as full duplexing (FD). To realize full duplexing, changes in the hardware of the cell- base stations, relaying equipment, hot spot access points and mobile phones are necessary to prevent the hardwares transmitters from interfering with their own receivers. This requires looking at how to separate the strong transmitted signal from the very weak received signal, a process requiring both hardware (analog) changes and more complex digital signal processing. Different ways of achieving that goal are examined. The books reviews the merits of hardware changes involving new duplexing components that may be different depending on the frequency band and cell hardware being used.

Developing full duplex (FD) systems in 5G LTE cellular communications and what can be achieved with ferrite-based circulators in terms of size reduction and performance enhancement, especially at millimetric frequencies, is considered. The relative merits of ferrite and non-ferrite circulators are compared in terms of their fundamental materials and device technologies, such as isolation, insertion loss, bandwidth and non-linearity. FD in the entire 5G cell is also examined and its resulting range of equipment and device communication. This includes front-hauling, more sophisticated back and front-hauling, backhaul beam switching, and cell extenders and relays, all of which could involve FD.
Preface xi
Acknowledgments xiii
Introduction xv
1 Introduction to Duplexing in Cellular Infrastructure
1(22)
1.1 Definition of Full and Half Duplexing
1(1)
1.2 Cellular Transceiver Architecture
2(2)
1.3 FDD and Half Duplexing
4(1)
1.4 Filter Technology and FD
5(2)
1.5 Noncommunications Applications of Full Duplexing
7(1)
1.6 5G Full Duplexing in Pt-Pt Radios Connecting Cells
7(2)
1.7 Small Cell Organization and FD
9(1)
1.8 Full-Duplex Relays
10(1)
1.9 Relaying Options
11(2)
1.10 AF Versus DF, FD Versus HD
13(1)
1.11 Patch Antennas
14(3)
1.12 Patch Antenna Realizations
17(1)
1.13 Enhanced Patch Antennas
18(1)
1.14
Chapter Summary
19(1)
References
20(1)
Selected Bibliography
21(2)
2 Transceiver Architectures for Access Points and Small Base Stations
23(22)
2.1 Introduction
23(1)
2.2 FD Transceiver Architecture
23(3)
2.3 Transceivers with Auxiliary Transmit or Receive Chains
26(3)
2.4 SIC Work at Rice University, Texas
29(1)
2.5 Microwave Signal Environment
30(2)
2.6 Signal Environment Work at Rice University
32(3)
2.7 SIC Work at Stanford University
35(2)
2.8 Full-Duplex MIMO
37(1)
2.9 SIC Work at Tampere University
38(2)
2.10 Comparison of Measured Transceivers from Rice, Stanford, and Tampere Universities
40(2)
2.10.1 SISO, with a Circulator
40(1)
2.10.2 SISO with Circulator versus Dual Antenna and Dual Polarization
40(2)
2.10.3 Transceiver with Auxiliary Tx or Rx
42(1)
2.11 Conclusions and Notes on FD Transceiver SIC for APs and Small Cells
42(1)
References
42(3)
3 FD in MIMO- and Massive-MIMO-Based Nodes
45(20)
3.1 Introduction
45(2)
3.2 Issues with FD Massive MIMO
47(1)
3.3 Work at Rice University on FD MU-MIMO
48(5)
3.4 Further Work on Joint Design of SIC and Beamforming
53(8)
3.5 Massive MIMO Beamforming Alternatives
61(1)
3.6 Massive MIMO for Self-Backhauling
62(1)
3.7 Summary of Massive MIMO Capability
63(1)
References
64(1)
4 Full-Duplex Mobile Devices
65(14)
4.1 Introduction
65(2)
4.2 Research at Columbia University
67(2)
4.3 Research at University of Twente
69(2)
4.4 Research at ASU
71(1)
4.5 Work at Washington University
72(3)
4.6 Comparison of Reported CMOS SIC Transceivers
75(2)
4.7 Summary
77(1)
References
77(2)
5 Near Antenna Frequency Tuning, Matching, and Hybrid Duplexing Circuits in Mobile Terminals
79(14)
5.1 Introduction
79(1)
5.2 FD SIC in Mobile Handsets
80(1)
5.3 Tunable Antennas in Small Nodes
80(2)
5.4 Antenna Size, Matching, and Tuning Mitigation Methods
82(2)
5.5 Adaptive Impedance Matching
84(1)
5.6 Capacitive Tuning Technologies
85(1)
5.7 CMOS SOI
86(1)
5.8 MEMS Switching and Tuning
87(1)
5.9 Paraelectric Tuning
87(1)
5.10 Hybrid Electrical-Balance Duplexer
88(3)
5.11 Summary
91(1)
References
91(2)
6 Nonreciprocal Devices with and without Magnetic Materials
93(18)
6.1 Introduction to Circulators
93(1)
6.2 Ferrite Junction Devices
94(2)
6.3 Linearly Configured Ferrite Devices
96(1)
6.4 Nonmagnetic Nonreciprocal Linearly Configured Devices
97(1)
6.5 STM Junction Circulators
98(3)
6.6 Differential STM Junctions
101(3)
6.7 Nonreciprocity Based on Staggered Commutation
104(2)
6.8 Integrated Circulator-Based Transceivers
106(2)
6.9 Conclusions on
Chapters 4, 5, and 6 on Full-Duplex Handsets Operating from 600 MHz to 2 GHz
108(2)
6.9.1 Antenna
108(1)
6.9.2 Antenna Tuner
108(1)
6.9.3 Tx/Rx Isolation from a Circulator-Based Duplexer
108(1)
6.9.4 Additional RF Analog Isolation
109(1)
References
110(1)
7 Millimetric Frequency Transceiver-Based Systems
111(14)
7.1 Millimetric Propagation
111(4)
7.2 Millimetric Transceivers for FD
115(1)
7.3 Synchronized Conductivity Modulation (SCM)
116(3)
7.4 Advances in CMOS for Millimetric Applications
119(1)
7.5 Complete FD Millimetric Transceivers
120(2)
7.6 Combining Millimetric Antenna Isolation Solutions with CMOS Transceivers
122(1)
7.7 Millimetric Link
122(1)
7.8 Half Duplex CMOS Millimetric Links
123(1)
7.9 Millimetric MIMO
123(1)
7.10 Summary
123(1)
References
123(2)
8 New Developments in Magnetic and Dielectric Materials for Ferrite Circulators
125(32)
8.1 The Reputation of Circulators in Cellular Devices
125(1)
8.2 High Dielectric Constant Ferrite
126(1)
8.3 Experimental Proof of Size Reduction Using High Dielectric Constant Ferrite
127(2)
8.4 Device Implications of Dielectric Constant
129(1)
8.5 Miniaturization of Other Ferrite Devices
130(1)
8.6 Effect of Permeability
131(7)
8.6.1 Above Resonance Operation
131(6)
8.6.2 Below Resonance Operation
137(1)
8.7 Limits of Materials-Based Size Reduction in Ferrite Devices
138(1)
8.8 Limits of Increasing Dielectric Constant of Ferrites in Devices
138(1)
8.9 Higher Frequency Devices Using New Low Magnetization Garnets
139(1)
8.10 Choice of Substituent Elements to Reduce Magnetization
140(1)
8.11 Nonmagnetic Tetrahedral Substitution
141(1)
8.12 Vanadium Substitution
142(3)
8.13 Aluminum Substitution
145(3)
8.14 Gadolinium Substitution
148(4)
8.15 Comparison with Conventional Materials
152(2)
8.16 Summary of the Effects of Individual Ions on the Behavior of Garnets
154(2)
References
156(1)
Selected Bibliography
156(1)
9 Circulators for Full Duplexing Covering 600 MHz to Low Microwave Frequencies
157(10)
9.1 Lumped Element Circulators
157(4)
9.1.1 Construction of Konishi Devices
161(1)
9.2 Lumped Element Designs for Mobile Handsets
161(2)
9.3 Discussion and Conclusions on Relative Merits of Table 9.1 Technologies
163(2)
References
165(2)
10 Circulators for Full Duplexing Covering 2--6 GHz
167(26)
10.1 Introduction
167(2)
10.2 Magnet Technology
169(2)
10.3 Ferrite/Dielectric Composite Junctions
171(1)
10.4 Magnetic Walls
171(2)
10.5 Meandering of Transmission Lines and Transformers
173(1)
10.6 Size Reduction Using High Dielectric Constant Ferrites and Other Techniques
174(4)
10.7 Segmented Dielectric Circulator Junction
178(5)
10.8 Trends in Circulator Packaging
183(3)
10.9 Subsystem Integration Versus Individual Surface Mount Components
186(2)
10.10 Linear Devices
188(2)
10.11 Further Size Reduction of Differential Phase Shift Circulator Structures
190(1)
10.12 Tunable Microstrip Ferrite Differential Phase Shifters
191(1)
10.13 Summary
191(1)
References
191(2)
11 Circulators as Duplexers for Millimetric Frequencies
193(20)
11.1 Background Overview of Half Duplexed Millimetric Implementation
193(2)
11.2 Full Duplexing at Millimetric Frequencies
195(1)
11.3 Ferrite Considerations for Millimetric Junction Circulator Applications
195(1)
11.4 All Spinel Ferrite Millimetric Microstrip Junction Devices
196(1)
11.5 Embedded Ferrite in Dielectric in Millimetric Microstrip Junction Devices
196(1)
11.6 Self-Biased Junction Magnetic Devices Based on Remanence at Millimetric Frequencies
197(8)
11.6.1 Self-Biased Junction Circulators Based on Hexagonal Ferrites
198(5)
11.6.2 Self-Biased Microstrip Circulators Based on Ferromagnetic Nanowires
203(2)
11.7 Substrate Integrated Waveguide
205(3)
11.8 Other SIW Devices
208(3)
11.9 Summary of Circulator Realizations at Millimetric Frequencies
211(1)
References
211(2)
12 Spectrum Use and Transceiver Technology
213(10)
12.1 Spectrum Use
213(1)
12.2 F.D
214(1)
12.3 Flexible HD/FD Operation
215(1)
12.4 Circulator Size and Frequency Range
215(4)
12.5 Integration of FD Transceiver Components
219(2)
12.6 Conclusions About the Use of Circulators and FD
221(1)
References
221(2)
List of Acronyms 223(6)
About the Author 229(2)
Index 231