Atjaunināt sīkdatņu piekrišanu

E-grāmata: Implications of Artificial Intelligence for Cybersecurity: Proceedings of a Workshop

  • Formāts: 98 pages
  • Izdošanas datums: 27-Dec-2019
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309494533
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 68,87 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 98 pages
  • Izdošanas datums: 27-Dec-2019
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309494533
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In recent years, interest and progress in the area of artificial intelligence (AI) and machine learning (ML) have boomed, with new applications vigorously pursued across many sectors. At the same time, the computing and communications technologies on which we have come to rely present serious security concerns: cyberattacks have escalated in number, frequency, and impact, drawing increased attention to the vulnerabilities of cyber systems and the need to increase their security. In the face of this changing landscape, there is significant concern and interest among policymakers, security practitioners, technologists, researchers, and the public about the potential implications of AI and ML for cybersecurity.



The National Academies of Sciences, Engineering, and Medicine convened a workshop on March 12-13, 2019 to discuss and explore these concerns. This publication summarizes the presentations and discussions from the workshop.

Table of Contents



Front Matter 1 Introduction and Context 2 Artificial Intelligence and the Landscape of Cyber Engagements 3 Currently Deployed Artificial Intelligence and Machine Learning Tools for Cyber Defense Operations 4 Adversarial Artificial Intelligence for Cybersecurity: Research and Development and Emerging Areas 5 Security Risks of Artificial Intelligence-Enabled Systems 6 Deep Fakes 7 Wrap-Up Discussion: Identifying Key Implications and Open Questions Appendixes Appendix A: Workshop Agenda Appendix B: Additional Discussion Questions from Sponsor Appendix C: Planning Committee and Staff Biographies Appendix D: Speaker Biographies Appendix E: Abbreviations and Acronyms
1 Introduction And Context
1(8)
Opening Remarks
2(2)
The State of Artificial Intelligence
4(5)
2 Artificial Intelligence And The Landscape Of Cyber Engagements
9(13)
Introduction and Context
9(2)
Artificial Intelligence and Machine Learning in Cyberattacks: Insights from Hacking Competitions
11(3)
Some Thoughts on the Use of Artificial Intelligence and Machine Learning in Cyberattacks: Economic and Practical Considerations
14(2)
Artificial Intelligence and Cyber Strategy
16(2)
Panel Discussion
18(4)
3 Currently Deployed Artificial Intelligence And Machine Learning Tools For Cyber Defense Operations
22(9)
Artificial Intelligence and Machine Learning in Anomaly Detection
23(1)
Artificial Intelligence for Identifying Novel Phishing Attacks
24(2)
Selected Machine Learning Applications at CrowdStrike
26(2)
Panel Discussion
28(3)
4 Adversarial Artificial Intelligence For Cybersecurity: Research And Development And Emerging Areas
31(13)
Adversarial Attacks on Machine Learning
31(1)
Emerging Areas at the Intersection of Artificial Intelligence and Cybersecurity
32(4)
Is RobustML Really Robust?
36(2)
Artificial Adversarial Intelligence for Cybersecurity
38(2)
Panel Discussion
40(4)
5 Security Risks Of Artificial Intelligence-Enabled Systems
44(10)
Security and Privacy in Machine Learning
44(4)
Secure Learning in Adversarial Physical Environments
48(2)
Working Toward Formally RobustML
50(2)
Panel Discussion
52(2)
6 Deep Fakes
54(7)
Deep Fakes: Where Are We?
55(1)
Detection of Forged or Synthetic Content: Visual, Audio, and Text
56(2)
Panel Discussion
58(3)
7 Wrap-Up Discussion: Identifying Key Implications And Open Questions
61(12)
Workshop Takeaways
68(2)
Concluding Remarks
70(3)
APPENDIXES
A Workshop Agenda
73(2)
B Additional Discussion Questions from Sponsor
75(1)
C Planning Committee and Staff Biographies
76(4)
D Speaker Biographies
80(4)
E Abbreviations and Acronyms
84