Atjaunināt sīkdatņu piekrišanu

E-grāmata: Improving Equity in Data Science: Re-Imagining the Teaching and Learning of Data in K-16 Classrooms

  • Formāts: 206 pages
  • Izdošanas datums: 03-Jun-2024
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781040030110
  • Formāts - PDF+DRM
  • Cena: 58,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 206 pages
  • Izdošanas datums: 03-Jun-2024
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781040030110

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book offers a comprehensive look at the ways in which data science can be conceptualized and engaged more equitably within the K-16 classroom setting, moving beyond merely broadening participation in educational opportunities.



Improving Equity in Data Science offers a comprehensive look at the ways in which data science can be conceptualized and engaged more equitably within the K-16 classroom setting, moving beyond merely broadening participation in educational opportunities. This book makes the case for field wide definitions, literacies and practices for data science teaching and learning that can be commonly discussed and used, and provides examples from research of these practices and literacies in action.

Authors will share stories and examples of research wherein data science advances equity and empowerment through the critical examination of social, educational, and political topics. In the first half of the book, readers will learn how data science can deliberately be embedded within K-12 spaces to empower students to use it to identify and address inequity. The latter half will focus on equity of access to data science learning opportunities in higher education, with a final synthesis of lessons learned and presentation of a 360-degree framework that links access, curriculum, and pedagogy as multiple facets collectively essential to comprehensive data science equity work.

Practitioners and teacher educators will be able to answer the question, “how can data science serve to move equity efforts in computing beyond basic inclusion to empowerment?” whether the goal is to simply improve definitions and approaches to research on data science or support teachers of data science in creating more equitable and inclusive environments within their classrooms.

1. Overview
2. Perspectives on Research and Practice In and Around
Cultural Relevance for Pre-College Data Science in Computing
3. Shrinking
Lands and Growing Perspectives: Affordances of Data Science Literacy During a
Culturally-Responsive Maker Project
4. Design of Tools and Learning
Environments for Equitable Computer Science + Data Science Education
5. The
Case For Community Centered Data Science
6. Humanistic Pre-Service Data
Science Teacher Education Across the Disciplines
7. Everyday Equitable Data
Literacy is Best in Social Studies: STEM Cant Do What We Can Do
8. The
Utility of Designing Data Science Education Programs from a Framework of
Identity
9. Building the Infrastructure for Quantitative Criticalism in
Research Methods Courses
10. Closing Thoughts and Future Directions
Colby Tofel-Grehl is an associate professor of STEM teacher education and learning at Utah State University, USA.

Emmanuel Schanzer is a math and CS-Education researcher, and the co-founder and chief curriculum architect at Bootstrap.