Atjaunināt sīkdatņu piekrišanu

Incidence and Symmetry in Design and Architecture [Mīkstie vāki]

(Fairfield University, Connecticut), (Syracuse University, New York)
  • Formāts: Paperback / softback, 320 pages, height x width x depth: 245x170x15 mm, weight: 450 g, Worked examples or Exercises
  • Sērija : Cambridge Urban and Architectural Studies
  • Izdošanas datums: 31-Mar-1983
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521297842
  • ISBN-13: 9780521297844
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 52,11 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 320 pages, height x width x depth: 245x170x15 mm, weight: 450 g, Worked examples or Exercises
  • Sērija : Cambridge Urban and Architectural Studies
  • Izdošanas datums: 31-Mar-1983
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521297842
  • ISBN-13: 9780521297844
Citas grāmatas par šo tēmu:
The initial purposes of this 1983 text were to develop mathematical topics relevant to the study of the incidence and symmetry structures of geometrical objects and to expand the reader's geometric intuition. The two fundamental mathematical topics employed in this endeavor are graph theory and the theory of transformation groups. Part I, Incidence, starts with two sections on the basics of graph theory and continues with a variety of specific applications of graph theory. Following this, the text becomes more theoretical; here graph theory is used to study surfaces other than the plane and the sphere. Part II, Symmetry, starts with a section on rigid motions or symmetries of the plane, which is followed by another on the classification of planar patterns. Additionally, an overview of symmetry in three-dimensional space is provided, along with a reconciliation of graph theory and group theory in a study of enumeration problems in geometry.

Papildus informācija

This 1983 text tackles two fundamental mathematical topics: graph theory and the theory of transformation groups.
Forward; Preface; Part I. Incidence: Introduction; Section
1. Incidence
and Graph Theory:
1. Topological transformations;
2. Basic graph theory;
3.
Directed graphs;
4. Traversability;
5. Distance; Section II. Incidence in the
Plane:
6. Maps;
7. Planar graphs;
8. Euler's formula;
9. Polyhedra; Section
III. Further Applications of Graph Theory:
10. Bracing structures;
11.
Optimal route design;
12. Mean distance;
13. Triangulations and organization
graphs; Section IV. Topology of Surfaces:
14. Surfaces;
15. Maps on surfaces;
16. Tesselations of the plane;
17. Compact surfaces; Part II. Symmetry:
Introduction; Section V. Symmetry and Group Theory:
18. Planar isometries;
19. Basic group theory;
20. Reflections on the plane;
21. The isometry group
of the plane; Section VI. Symmetry in the Plane:
22. Discrete groups;
23. The
circular groups;
24. The frieze groups;
25. The wallpaper groups; Section
VII. Symmetry in Space:
26. Space isometries;
27. Discrete space groups;
28.
The layer groups;
29. the rod groups; Section VIII. Symmetry and Enumeration:
30. A combinational approach to symmetry;
31. Graph symmetry;
32.
Enumeration;
33. Fundamental architectural arrangements revisited;
Bibliography; Indices.