Atjaunināt sīkdatņu piekrišanu

Incremental Process Discovery [Mīkstie vāki]

  • Formāts: Paperback / softback, 367 pages, height x width: 235x155 mm, 76 Illustrations, color; 80 Illustrations, black and white; XVI, 367 p. 156 illus., 76 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Business Information Processing 540
  • Izdošanas datums: 06-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 303180564X
  • ISBN-13: 9783031805646
  • Mīkstie vāki
  • Cena: 61,19 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 71,99 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 367 pages, height x width: 235x155 mm, 76 Illustrations, color; 80 Illustrations, black and white; XVI, 367 p. 156 illus., 76 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Business Information Processing 540
  • Izdošanas datums: 06-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 303180564X
  • ISBN-13: 9783031805646
This book constitutes the revised version of the award-winning PhD dissertation written by the author at RWTH Aachen, Germany.





It presents a framework for incremental process discovery that allows users to learn and refine process models from event data iteratively. Next to process discovery and event data handling, it also contributes to conformance checking, a further fundamental process mining task. Eventually, it presents Cortado, an open-source process mining software tool that implements the algorithms and techniques proposed in an integrated and comprehensive fashion. This part also includes a case study applying Cortado and, therefore, the various contributions of this thesis in a real-life scenario.





In 2024, this PhD dissertation won the Best Process Mining PhD Dissertation Award by the IEEE Task Force for Process Mining, granted to outstanding PhD theses in this field.

Opening and fundamentals.- incremental process discovery.- facilitating interaction with event data.- realization and application.- closure.