Atjaunināt sīkdatņu piekrišanu

E-grāmata: Inductive Logic Programming: 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers

Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 47,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the thoroughly refereed post-conference proceedings of the 24rd International Conference on Inductive Logic Programming, ILP 2014, held in Nancy, France, in September 2013.The 14 revised papers presented were carefully reviewed and selected from 41 submissions. The papers focus on topics such as the inducing of logic programs, learning from data represented with logic, multi-relational machine learning, learning from graphs, and applications of these techniques to important problems in fields like bioinformatics, medicine, and text mining.

Reframing on Relational Data.- Inductive Learning using Constraint-driven Bias.- Nonmonotonic Learning in Large Biological Networks.- Construction of Complex Aggregates with Random Restart Hill-Climbing.- Logical minimisation of meta-rules within Meta-Interpretive Learning.- Goal and plan recognition via parse trees using prefix and infix probability computation.- Effectively creating weakly labeled training examples via approximate domain knowledge.- Learning Prime Implicant Conditions From Interpretation Transition.- Statistical Relational Learning for Handwriting Recognition.- The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions.- Towards machine learning of predictive models from ecological data.- PageRank, ProPPR, and Stochastic Logic Programs.- Complex aggregates over clusters of elements.- On the Complexity of Frequent Subtree Mining in Very Simple Structures.

Reframing on Relational Data.- Inductive Learning using Constraint-driven Bias.- Nonmonotonic Learning in Large Biological Networks.- Construction of Complex Aggregates with Random Restart Hill-Climbing.- Logical minimisation of meta-rules within Meta-Interpretive Learning.- Goal and plan recognition via parse trees using prefix and infix probability computation.- Effectively creating weakly labeled training examples via approximate domain knowledge.- Learning Prime Implicant Conditions From Interpretation Transition.- Statistical Relational Learning for Handwriting Recognition.- The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions.- Towards machine learning of predictive models from ecological data.- PageRank, ProPPR, and Stochastic Logic Programs.- Complex aggregates over clusters of elements.- On the Complexity of Frequent Subtree Mining in Very Simple Structures.