Atjaunināt sīkdatņu piekrišanu

E-grāmata: Inductive Logic Programming: 30th International Conference, ILP 2021, Virtual Event, October 25-27, 2021, Proceedings

Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed conference proceedings of the 30th International Conference on Inductive Logic Programming, ILP 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually.

The 16 papers and 3 short papers presented were carefully reviewed and selected from 19 submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.

Embedding Models for Knowledge Graphs Induced by Clusters of Relations
and Background Knowledge.- Fanizzi Automatic Conjecturing of P-Recursions
Using Lifted Inference.- Machine learning of microbial interactions using
Abductive ILP and Hypothesis Frequency/Compression Estimation.- Answer-Set
Programs for Reasoning about Counterfactual Interventions and Responsibility
Scores for Classification.- Reyes Synthetic Datasets and Evaluation Tools for
Inductive Neural Reasoning.- Using Domain-Knowledge to Assist Lead Discovery
in Early-Stage Drug Design.- Non-Parametric Learning of Embeddings for
Relational Data using Gaifman Locality Theorem.- Ontology Graph Embeddings
and ILP for Financial Forecasting.- Transfer learning for boosted relational
dependency networks through genetic algorithm.- Online Learning of Logic
Based Neural Network Structures.- Programmatic policy extraction by iterative
local search.- Mapping across relational domains for transfer learning with
word embeddings-based similarity.- A First Step Towards Even More Sparse
Encodings of Probability Distributions.- Feature Learning by Least
Generalization.- Learning Logic Programs Using Neural Networks by Exploiting
Symbolic Invariance.- Learning and revising dynamic temporal theories in the
full Discrete Event Calculus.- Human-like rule learning from images using
one-shot hypothesis derivation.- Generative Clausal Networks: Relational
Decision Trees as Probabilistic Circuits.- A Simulated Annealing
Meta-heuristic for Concept Learning in Description Logics.