Atjaunināt sīkdatņu piekrišanu

Inelastic Light Scattering of Semiconductor Nanostructures: Fundamentals and Recent Advances 2006 ed. [Hardback]

  • Formāts: Hardback, 180 pages, height x width: 235x155 mm, weight: 1000 g, XI, 180 p., 1 Hardback
  • Sērija : Springer Tracts in Modern Physics 219
  • Izdošanas datums: 14-Sep-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540365257
  • ISBN-13: 9783540365259
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 180 pages, height x width: 235x155 mm, weight: 1000 g, XI, 180 p., 1 Hardback
  • Sērija : Springer Tracts in Modern Physics 219
  • Izdošanas datums: 14-Sep-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540365257
  • ISBN-13: 9783540365259
Citas grāmatas par šo tēmu:
Semiconductor nanostructures are a field of enormous and still-growing research interest. On one hand, they are already realized in mass products, e.g., in high-electron-mobility field-effect transistors and quantum-well lasers. On the other hand, they allow, in specially tailored systems, the investigation of fundamental properties, such as many-particle interactions of electrons in reduced dimensions. This book attempts to fill the gap between general semiconductor textbooks and research articles. It provides (i) an introduction into the basic concepts of inelastic light scattering on semiconductor nanostructures and into their fabrication and basic properties, and, (ii) a description of the most striking recent advances in this field. Each chapter is as self-contained as possible. The monograph should interest researchers, experimentalists as well as theorists, and research students working in the field. It should also be interesting for graduate students with knowledge in solid-state physics and quantum mechanics who are interested in optical spectroscopies of semiconductors.
1 Introduction 1(8)
References
4(5)
Part I Basic Concepts
2 Fundamentals of Semiconductors and Nanostructures
9(32)
2.1 III-V Semiconductors: Crystal and Band Structure
9(7)
2.1.1 Phenomenology
9(4)
2.1.2 k*p Theory
13(3)
2.2 Electrons in Three, Two, One, and Zero Dimensions
16(2)
2.3 Layered Growth of Semiconductors: Vertical Nanostructures
18(4)
2.3.1 Molecular—Beam Epitaxy (MBE)
19(3)
2.4 Electronic Ground State of Vertical Nanostructures
22(8)
2.4.1 Envelope Function Approximation (EFA)
22(3)
2.4.2 Self—Consistent Band Structure Calculation
25(5)
2.5 Lateral Micro- and Nanostructures
30(7)
2.5.1 General Remarks
30(1)
2.5.2 Lithography and Etching
31(4)
2.5.3 Self—Assembled Quantum Dots
35(2)
2.6 Electronic Ground State of Lateral Nanostructures
37(1)
References
38(3)
3 Electronic Elementary Excitations
41(16)
3.1 Single—Particle Continua
42(1)
3.2 Electron—Density Waves: Phenomenology of Collective Charge— and Spin—Density Excitations
43(5)
3.3 Collective Excitations: Theoretical Models
48(6)
3.3.1 Basic Ideas of RPA and TDLDA
49(1)
3.3.2 Application to Two—Subband System
50(3)
3.3.3 Plasmon—LO Phonon Coupling
53(1)
References
54(3)
4 Basic Concepts of Inelastic Light Scattering, Experiments on Quantum Wells
57(30)
4.1 Macroscopic Approach
57(5)
4.1.1 General Remarks
57(2)
4.1.2 Macroscopic Point of View
59(2)
4.1.3 Dissipation—Fluctuation Analysis
61(1)
4.2 Microscopic Approach, Polarization Selection Rules
62(21)
4.2.1 Two- and Three-Step Scattering Processes
62(6)
4.2.2 Scattering Cross Section: General Considerations
68(3)
4.2.3 Scattering by Crystal Electrons: Polarization Selection Rules
71(4)
4.2.4 Parity Selection Rules in Nanostructures
75(1)
4.2.5 Intrasubband Excitations, Grating Coupler—Assisted Scattering
76(3)
4.2.6 Multiple Cyclotron Resonance Excitations in Quantum Wells
79(4)
References
83(4)
Part II Recent Advances
5 Quantum Dots: Spectroscopy of Artificial Atoms
87(34)
5.1 Introduction
87(3)
5.2 Semiconductor Quantum Dots
90(5)
5.2.1 Preparation of Quantum Dots
90(1)
5.2.2 Electronic Ground State and Excitations
91(4)
5.3 GaAs—A1GaAs Deep-Etched Quantum Dots
95(17)
5.3.1 Parity Selection Rules in Quantum Dots
96(2)
5.3.2 Fine Structure in Quantum Dots
98(6)
5.3.3 The Important Role of Extreme Resonance
104(5)
5.3.4 Calculations for Few-Electron Quantum Dots
109(3)
5.4 InAs Self-Assembled Quantum Dots
112(6)
5.4.1 Few—Electron Quantum—Dot Atoms
112(1)
5.4.2 Electronic Excitations in InAs SAQD
113(1)
5.4.3 Comparison with Exact Calculations
114(4)
References
118(3)
6 Quantum Wires: Interacting Quantum Liquids
121(24)
6.1 Introduction
121(1)
6.2 Electronic Elementary Excitations in Quantum Wires
122(8)
6.2.1 Ground State and Excitations
122(3)
6.2.2 Experimental Spectra and Wave—Vector Dependence
125(5)
6.3 Confined and Propagating 1D Plasmons in a Magnetic Field
130(8)
6.3.1 Microscopic Picture for Confined Plasmons
130(4)
6.3.2 Coupling with Bernstein Modes
134(4)
6.4 Towards the Tomonaga-Luttinger Liquid?
138(4)
References
142(3)
7 Tunneling-Coupled Systems
145(16)
7.1 Introduction
145(1)
7.2 Charge-Density Excitation Spectrum in Tunneling-Coupled Double Quantum Wells
146(4)
7.3 Experiments on Tunable GaAs-AlGaAs Double Quantum Wells
150(3)
7.4 Vertically-Coupled Quantum Wires
153(5)
References
158(3)
8 Inelastic Light Scattering in Microcavities
161(10)
8.1 Introduction
161(1)
8.2 2DES Inside a Semiconductor Microcavity
162(1)
8.3 Optical Double-Resonance Experiments
163(5)
References
168
Part III Appendix
Kronecker Products of Dipole Matrix Elements I
171(2)
Kronecker Products of Dipole Matrix Elements II
173(2)
Index 175