Atjaunināt sīkdatņu piekrišanu

E-grāmata: Inevitable Knowledge

  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 29-Nov-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031734618
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 29-Nov-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031734618

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The Holy Grail of AI is artificial generative intelligence, a computer that can think human-like. However, human thinking is qualitatively more complex than computer calculations. So, the ultimate goal of AI cannot be achieved.





Not quite. This book shows that a model of human-like, meaningful processing can be introduced based on a theory of cognition (how human processing can be abstracted in a series of events), semiotics (what signs are and what kind of distinctions can be communicated by signs), and computer science (how all this can be realized as a procedure). The emerging model offers a solution to the problem of artificial intelligence, not by itself, but in collaboration with the human agent by augmenting its intelligence. But there is more to it than that. Because of the fundamental nature of signs, the semiotic concept of meaning can be transformative for AI research.





The book comprehensively covers several applications, including language processing, analyzing integrative negation processes, and solving mathematical problems. It delves into the intricate characteristics of the meaningful processing problem and the fascinating journey that led to its solution. The book provides insight into the historical background of the problem and the solution, enriching the readers understanding and engagement. The text is self-contained. All necessary technical terms are explained. 

Motto.- Acknowledgments.- Prologue.-
1. Introduction.-
2. Knowledge is formed by cognition.-
3. Cognition is formed by brain processes.-
4. Brain processes are formed by sign processes.-
5. Sign processes are formed by categories.-
6. Knowledge is categorial.

Janos J. Sarbo is a researcher (retired) of the Institute for Computing and Information Systems, Radboud University, Nijmegen, The Netherlands. His research focuses on knowledge representation based on a theory of cognition and a Peircean theory of signs. In the past, he did research in various fields of computer science, including compiler construction, natural language parsing, and formal conceptual analysis. He is one of the authors of the book "Knowledge in Formation - A Computational Theory of Interpretation" (Springer, 2011).