Atjaunināt sīkdatņu piekrišanu

E-grāmata: Infinity Operads And Monoidal Categories With Group Equivariance

(The Ohio State Univ At Newark, Usa)
  • Formāts: 488 pages
  • Izdošanas datums: 02-Dec-2021
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811250941
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 123,98 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 488 pages
  • Izdošanas datums: 02-Dec-2021
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811250941
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph provides a coherent development of operads, infinity operads, and monoidal categories, equipped with equivariant structures encoded by an action operad. A group operad is a planar operad with an action operad equivariant structure. In the first three parts of this monograph, we establish a foundation for group operads and for their higher coherent analogues called infinity group operads. Examples include planar, symmetric, braided, ribbon, and cactus operads, and their infinity analogues. For example, with the tools developed here, we observe that the coherent ribbon nerve of the universal cover of the framed little 2-disc operad is an infinity ribbon operad. In Part 4 we define general monoidal categories equipped with an action operad equivariant structure and provide a unifying treatment of coherence and strictification for them. Examples of such monoidal categories include symmetric, braided, ribbon, and coboundary monoidal categories, which naturally arise in the representation theory of quantum groups and of coboundary Hopf algebras and in the theory of crystals of finite dimensional complex reductive Lie algebras.

Preface vii
Operads with Group Equivariance 1(120)
1 Introduction
3(16)
1.1 Overview and Prospects
3(11)
1.2 Categorical Conventions
14(5)
2 Planar Operads
19(16)
2.1 Planar Operads as Monoids
19(3)
2.2 Coherence for Planar Operads
22(5)
2.3 Algebras
27(3)
2.4 Examples of Planar Operads
30(5)
3 Symmetric Operads
35(24)
3.1 Symmetric Operads as Monoids
35(2)
3.2 Coherence for Symmetric Operads
37(3)
3.3 Algebras
40(3)
3.4 Little Cube and Little Disc Operads
43(4)
3.5 Operad in Non-Commutative Probability
47(1)
3.6 Phylogenetic Operad
48(5)
3.7 Planar Tangle Operad
53(6)
4 Group Operads
59(14)
4.1 Action Operads
60(3)
4.2 Group Operads as Monoids
63(2)
4.3 Coherence for Group Operads
65(3)
4.4 Parenthesized Group Operads
68(3)
4.5 Group Operads from Translation Categories
71(2)
5 Braided Operads
73(16)
5.1 Braid Groups
73(5)
5.2 Braided Operads as Monoids
78(3)
5.3 Examples of Braided Operads
81(2)
5.4 Universal Cover of the Little 2-Cube Operad
83(6)
6 Ribbon Operads
89(12)
6.1 Ribbon Groups
89(5)
6.2 Ribbon Operads as Monoids
94(1)
6.3 Examples of Ribbon Operads
95(2)
6.4 Universal Cover of the Framed Little 2-Disc Operad
97(4)
7 Cactus Operads
101(20)
7.1 Cactus Groups
101(4)
7.2 Direct Sum Cacti
105(2)
7.3 Block Cacti
107(7)
7.4 Cactus Group Operad
114(3)
7.5 Examples of Cactus Operads
117(2)
7.6 Relationship with Braid Group Operad
119(2)
Constructions of Group Operads 121(92)
8 Naturality
123(22)
8.1 Change of Action Operads
123(7)
8.2 Symmetrization and Other Left Adjoints
130(4)
8.3 Change of Base Categories
134(7)
8.4 Change of Algebra Categories
141(4)
9 Group Operads as Algebras
145(18)
9.1 Planar Trees
145(5)
9.2 Group Trees
150(7)
9.3 Symmetric Operad for Group Operads
157(6)
10 Group Operads with Varying Colors
163(22)
10.1 Category of All Group Operads
163(3)
10.2 Symmetric Monoidal Structure
166(7)
10.3 Closed Structure
173(4)
10.4 Comparing Symmetric Monoidal Structures
177(3)
10.5 Non-Strong Monoidality
180(3)
10.6 Local Finite Presentability
183(2)
11 Boardman-Vogt Construction for Group Operads
185(28)
11.1 Substitution Category
186(3)
11.2 Vertex Decoration
189(5)
11.3 Internal Edge Decoration
194(4)
11.4 Boardman-Vogt Construction
198(5)
11.5 Augmentation
203(3)
11.6 Change of Action Operads
206(7)
Infinity Group Operads 213(118)
12 Category of Group Trees
215(18)
12.1 Morphisms of Group Trees
216(4)
12.2 Naturality of Group Trees
220(3)
12.3 From Group Trees to Group Operads
223(7)
12.4 Change of Action Operads
230(3)
13 Contractibility of Group Tree Category
233(18)
13.1 Closed Group Trees
233(6)
13.2 Closure as Reflection
239(2)
13.3 Output Extension
241(6)
13.4 Contractibility
247(4)
14 Generalized Reedy Structure
251(24)
14.1 Coface and Codegeneracy
251(11)
14.2 Dualizable Generalized Reedy Structure
262(4)
14.3 Reedy-Type Model Structures
266(4)
14.4 Eilenberg-Zilber Structure
270(5)
15 Realization-Nerve Adjunction for Group Operads
275(20)
15.1 Realization and Nerve
275(4)
15.2 Group Operads as Colimits
279(5)
15.3 Nerve is Fully Faithful
284(2)
15.4 Symmetric Monoidal Structure on Presheaf Category
286(2)
15.5 Nerve is Symmetric Monoidal
288(1)
15.6 Change of Action Operads
289(2)
15.7 Comparing Symmetric Monoidal Structures
291(4)
16 Nerve Theorem for Group Operads
295(18)
16.1 Nerve Satisfies Segal Condition
296(4)
16.2 Segal Condition Implies Strict Infinity
300(6)
16.3 Strict Infinity Implies Segal Condition
306(3)
16.4 Characterization of the Nerve
309(4)
17 Coherent Realization-Nerve and Infinity Group Operads
313(18)
17.1 Coherent Realization and Coherent Nerve
314(4)
17.2 Coherent Realization of the Nerve
318(3)
17.3 Nerve to Coherent Nerve
321(1)
17.4 Change of Action Operads
322(1)
17.5 Planar BV Construction of Planar Trees
323(2)
17.6 Coherent Nerves are Infinity Group Operads
325(6)
Coherence for Monoidal Categories with Group Equivariance 331(114)
18 Monoidal Categories
333(26)
18.1 Monoidal Categories and Monoidal Functors
334(3)
18.2 Monoidal Category Operad
337(5)
18.3 Operadic Coherence for Monoidal Categories
342(5)
18.4 Strict Monoidal Functors as Algebra Morphisms
347(2)
18.5 Strict Monoidal Category Operad
349(2)
18.6 Monoidal Functor Operad
351(8)
19 G-Monoidal Categories
359(18)
19.1 G-Monoidal Category Operad
360(4)
19.2 Coherence for G-Monoidal Categories, I
364(3)
19.3 Strict G-Monoidal Categories
367(2)
19.4 G-Monoidal Functors
369(2)
19.5 G-Monoidal Functor Operad
371(6)
20 Coherence for G-Monoidal Categories
377(14)
20.1 Strictification of G-Monoidal Categories
378(2)
20.2 Strictification of Free G-Monoidal Categories
380(3)
20.3 Free Strict G-Monoidal Categories
383(3)
20.4 Free G-Monoidal Categories
386(5)
21 Braided and Symmetric Monoidal Categories
391(22)
21.1 Braided Monoidal Categories are B-Monoidal Categories
392(7)
21.2 Braided Monoidal Functors are B-Monoidal Functors
399(4)
21.3 Coherence for Braided Monoidal Categories
403(2)
21.4 Symmetric Monoidal Categories are S-Monoidal Categories
405(3)
21.5 Symmetric Monoidal Functors are S-Monoidal Functors
408(3)
21.6 Coherence for Symmetric Monoidal Categories
411(2)
22 Ribbon Monoidal Categories
413(10)
22.1 Ribbon Monoidal Categories are R-Monoidal Categories
414(3)
22.2 Ribbon Monoidal Functors are R-Monoidal Functors
417(3)
22.3 Coherence for Ribbon Monoidal Categories
420(3)
23 Coboundary Monoidal Categories
423(22)
23.1 Natural Actions on Coboundary Monoidal Categories
424(12)
23.2 Coboundary Monoidal Categories are Cac-Monoidal Categories
436(4)
23.3 Coboundary Monoidal Functors are Cac-Monoidal Functors
440(2)
23.4 Coherence for Coboundary Monoidal Categories
442(3)
List of Notations 445(8)
Bibliography 453(6)
Index 459