Preface |
|
vii | |
Operads with Group Equivariance |
|
1 | (120) |
|
|
3 | (16) |
|
1.1 Overview and Prospects |
|
|
3 | (11) |
|
1.2 Categorical Conventions |
|
|
14 | (5) |
|
|
19 | (16) |
|
2.1 Planar Operads as Monoids |
|
|
19 | (3) |
|
2.2 Coherence for Planar Operads |
|
|
22 | (5) |
|
|
27 | (3) |
|
2.4 Examples of Planar Operads |
|
|
30 | (5) |
|
|
35 | (24) |
|
3.1 Symmetric Operads as Monoids |
|
|
35 | (2) |
|
3.2 Coherence for Symmetric Operads |
|
|
37 | (3) |
|
|
40 | (3) |
|
3.4 Little Cube and Little Disc Operads |
|
|
43 | (4) |
|
3.5 Operad in Non-Commutative Probability |
|
|
47 | (1) |
|
|
48 | (5) |
|
|
53 | (6) |
|
|
59 | (14) |
|
|
60 | (3) |
|
4.2 Group Operads as Monoids |
|
|
63 | (2) |
|
4.3 Coherence for Group Operads |
|
|
65 | (3) |
|
4.4 Parenthesized Group Operads |
|
|
68 | (3) |
|
4.5 Group Operads from Translation Categories |
|
|
71 | (2) |
|
|
73 | (16) |
|
|
73 | (5) |
|
5.2 Braided Operads as Monoids |
|
|
78 | (3) |
|
5.3 Examples of Braided Operads |
|
|
81 | (2) |
|
5.4 Universal Cover of the Little 2-Cube Operad |
|
|
83 | (6) |
|
|
89 | (12) |
|
|
89 | (5) |
|
6.2 Ribbon Operads as Monoids |
|
|
94 | (1) |
|
6.3 Examples of Ribbon Operads |
|
|
95 | (2) |
|
6.4 Universal Cover of the Framed Little 2-Disc Operad |
|
|
97 | (4) |
|
|
101 | (20) |
|
|
101 | (4) |
|
|
105 | (2) |
|
|
107 | (7) |
|
|
114 | (3) |
|
7.5 Examples of Cactus Operads |
|
|
117 | (2) |
|
7.6 Relationship with Braid Group Operad |
|
|
119 | (2) |
Constructions of Group Operads |
|
121 | (92) |
|
|
123 | (22) |
|
8.1 Change of Action Operads |
|
|
123 | (7) |
|
8.2 Symmetrization and Other Left Adjoints |
|
|
130 | (4) |
|
8.3 Change of Base Categories |
|
|
134 | (7) |
|
8.4 Change of Algebra Categories |
|
|
141 | (4) |
|
9 Group Operads as Algebras |
|
|
145 | (18) |
|
|
145 | (5) |
|
|
150 | (7) |
|
9.3 Symmetric Operad for Group Operads |
|
|
157 | (6) |
|
10 Group Operads with Varying Colors |
|
|
163 | (22) |
|
10.1 Category of All Group Operads |
|
|
163 | (3) |
|
10.2 Symmetric Monoidal Structure |
|
|
166 | (7) |
|
|
173 | (4) |
|
10.4 Comparing Symmetric Monoidal Structures |
|
|
177 | (3) |
|
10.5 Non-Strong Monoidality |
|
|
180 | (3) |
|
10.6 Local Finite Presentability |
|
|
183 | (2) |
|
11 Boardman-Vogt Construction for Group Operads |
|
|
185 | (28) |
|
11.1 Substitution Category |
|
|
186 | (3) |
|
|
189 | (5) |
|
11.3 Internal Edge Decoration |
|
|
194 | (4) |
|
11.4 Boardman-Vogt Construction |
|
|
198 | (5) |
|
|
203 | (3) |
|
11.6 Change of Action Operads |
|
|
206 | (7) |
Infinity Group Operads |
|
213 | (118) |
|
12 Category of Group Trees |
|
|
215 | (18) |
|
12.1 Morphisms of Group Trees |
|
|
216 | (4) |
|
12.2 Naturality of Group Trees |
|
|
220 | (3) |
|
12.3 From Group Trees to Group Operads |
|
|
223 | (7) |
|
12.4 Change of Action Operads |
|
|
230 | (3) |
|
13 Contractibility of Group Tree Category |
|
|
233 | (18) |
|
|
233 | (6) |
|
13.2 Closure as Reflection |
|
|
239 | (2) |
|
|
241 | (6) |
|
|
247 | (4) |
|
14 Generalized Reedy Structure |
|
|
251 | (24) |
|
14.1 Coface and Codegeneracy |
|
|
251 | (11) |
|
14.2 Dualizable Generalized Reedy Structure |
|
|
262 | (4) |
|
14.3 Reedy-Type Model Structures |
|
|
266 | (4) |
|
14.4 Eilenberg-Zilber Structure |
|
|
270 | (5) |
|
15 Realization-Nerve Adjunction for Group Operads |
|
|
275 | (20) |
|
15.1 Realization and Nerve |
|
|
275 | (4) |
|
15.2 Group Operads as Colimits |
|
|
279 | (5) |
|
15.3 Nerve is Fully Faithful |
|
|
284 | (2) |
|
15.4 Symmetric Monoidal Structure on Presheaf Category |
|
|
286 | (2) |
|
15.5 Nerve is Symmetric Monoidal |
|
|
288 | (1) |
|
15.6 Change of Action Operads |
|
|
289 | (2) |
|
15.7 Comparing Symmetric Monoidal Structures |
|
|
291 | (4) |
|
16 Nerve Theorem for Group Operads |
|
|
295 | (18) |
|
16.1 Nerve Satisfies Segal Condition |
|
|
296 | (4) |
|
16.2 Segal Condition Implies Strict Infinity |
|
|
300 | (6) |
|
16.3 Strict Infinity Implies Segal Condition |
|
|
306 | (3) |
|
16.4 Characterization of the Nerve |
|
|
309 | (4) |
|
17 Coherent Realization-Nerve and Infinity Group Operads |
|
|
313 | (18) |
|
17.1 Coherent Realization and Coherent Nerve |
|
|
314 | (4) |
|
17.2 Coherent Realization of the Nerve |
|
|
318 | (3) |
|
17.3 Nerve to Coherent Nerve |
|
|
321 | (1) |
|
17.4 Change of Action Operads |
|
|
322 | (1) |
|
17.5 Planar BV Construction of Planar Trees |
|
|
323 | (2) |
|
17.6 Coherent Nerves are Infinity Group Operads |
|
|
325 | (6) |
Coherence for Monoidal Categories with Group Equivariance |
|
331 | (114) |
|
|
333 | (26) |
|
18.1 Monoidal Categories and Monoidal Functors |
|
|
334 | (3) |
|
18.2 Monoidal Category Operad |
|
|
337 | (5) |
|
18.3 Operadic Coherence for Monoidal Categories |
|
|
342 | (5) |
|
18.4 Strict Monoidal Functors as Algebra Morphisms |
|
|
347 | (2) |
|
18.5 Strict Monoidal Category Operad |
|
|
349 | (2) |
|
18.6 Monoidal Functor Operad |
|
|
351 | (8) |
|
|
359 | (18) |
|
19.1 G-Monoidal Category Operad |
|
|
360 | (4) |
|
19.2 Coherence for G-Monoidal Categories, I |
|
|
364 | (3) |
|
19.3 Strict G-Monoidal Categories |
|
|
367 | (2) |
|
|
369 | (2) |
|
19.5 G-Monoidal Functor Operad |
|
|
371 | (6) |
|
20 Coherence for G-Monoidal Categories |
|
|
377 | (14) |
|
20.1 Strictification of G-Monoidal Categories |
|
|
378 | (2) |
|
20.2 Strictification of Free G-Monoidal Categories |
|
|
380 | (3) |
|
20.3 Free Strict G-Monoidal Categories |
|
|
383 | (3) |
|
20.4 Free G-Monoidal Categories |
|
|
386 | (5) |
|
21 Braided and Symmetric Monoidal Categories |
|
|
391 | (22) |
|
21.1 Braided Monoidal Categories are B-Monoidal Categories |
|
|
392 | (7) |
|
21.2 Braided Monoidal Functors are B-Monoidal Functors |
|
|
399 | (4) |
|
21.3 Coherence for Braided Monoidal Categories |
|
|
403 | (2) |
|
21.4 Symmetric Monoidal Categories are S-Monoidal Categories |
|
|
405 | (3) |
|
21.5 Symmetric Monoidal Functors are S-Monoidal Functors |
|
|
408 | (3) |
|
21.6 Coherence for Symmetric Monoidal Categories |
|
|
411 | (2) |
|
22 Ribbon Monoidal Categories |
|
|
413 | (10) |
|
22.1 Ribbon Monoidal Categories are R-Monoidal Categories |
|
|
414 | (3) |
|
22.2 Ribbon Monoidal Functors are R-Monoidal Functors |
|
|
417 | (3) |
|
22.3 Coherence for Ribbon Monoidal Categories |
|
|
420 | (3) |
|
23 Coboundary Monoidal Categories |
|
|
423 | (22) |
|
23.1 Natural Actions on Coboundary Monoidal Categories |
|
|
424 | (12) |
|
23.2 Coboundary Monoidal Categories are Cac-Monoidal Categories |
|
|
436 | (4) |
|
23.3 Coboundary Monoidal Functors are Cac-Monoidal Functors |
|
|
440 | (2) |
|
23.4 Coherence for Coboundary Monoidal Categories |
|
|
442 | (3) |
List of Notations |
|
445 | (8) |
Bibliography |
|
453 | (6) |
Index |
|
459 | |