Atjaunināt sīkdatņu piekrišanu

Information-Theoretic Evaluation for Computational Biomedical Ontologies [Mīkstie vāki]

  • Formāts: Paperback / softback, 46 pages, height x width: 235x155 mm, weight: 1007 g, 6 Illustrations, color; 6 Illustrations, black and white; VII, 46 p. 12 illus., 6 illus. in color., 1 Paperback / softback
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 23-Jan-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319041371
  • ISBN-13: 9783319041377
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 46 pages, height x width: 235x155 mm, weight: 1007 g, 6 Illustrations, color; 6 Illustrations, black and white; VII, 46 p. 12 illus., 6 illus. in color., 1 Paperback / softback
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 23-Jan-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319041371
  • ISBN-13: 9783319041377
The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, yet evaluating their performance is difficult due to problems caused by the structure of biomedical ontologies and incomplete annotations of genes. This work proposes an information-theoretic framework to evaluate the performance of computational protein function prediction. A Bayesian network is used, structured according to the underlying ontology, to model the prior probability of a protein's function. The concepts of misinformation and remaining uncertainty are then defined, that can be seen as analogs of precision and recall. Finally, semantic distance is proposed as a single statistic for ranking classification models. The approach is evaluated by analyzing three protein function predictors of gene ontology terms. The work addresses several weaknesses of current metrics, and provides valuable insights into the performance of protein function prediction tools.
1 Introduction
1(12)
1.1 Background
4(2)
1.2 Protein Function Prediction Scenarios
6(1)
1.3 State of the Art Methods
7(6)
References
7(6)
2 Methods
13(16)
2.1 Calculating the Joint Probability of a Graph
13(12)
2.1.1 Calculating the Information Content of a Graph
16(1)
2.1.2 Comparing Two Annotation Graphs
17(1)
2.1.3 Measuring the Quality of Function Prediction
18(2)
2.1.4 Weighted Metrics
20(1)
2.1.5 Semantic Distance
20(1)
2.1.6 Precision and Recall
21(1)
2.1.7 Supplementary Evaluation Metrics
22(3)
2.1.8 Additional Topological Metrics
25(1)
2.2 Confusion Matrix Interpretation of ru and mi
25(1)
2.3 Annotation Models
26(3)
2.3.1 The Naive Model
26(1)
2.3.2 The BLAST Model
27(1)
2.3.3 The GOtcha Model
27(1)
References
27(2)
3 Experiments and Results
29(14)
3.1 Average Information Content of a Protein
29(1)
3.2 Comparative Examples of Calculating Information Content
30(3)
3.3 Two-Dimensional Plots
33(2)
3.4 Comparisons of Single Statistics
35(8)
References
40(3)
4 Discussion
43(2)
References
44(1)
Index 45