Atjaunināt sīkdatņu piekrišanu

Innovations and Advances in Cognitive Systems: ICIACS 2025, Volume 1 [Hardback]

  • Formāts: Hardback, 455 pages, height x width: 235x155 mm, 160 Illustrations, color; 29 Illustrations, black and white; VII, 455 p. 189 illus., 160 illus. in color., 1 Hardback
  • Sērija : Information Systems Engineering and Management 59
  • Izdošanas datums: 10-Sep-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031977084
  • ISBN-13: 9783031977084
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmata tiks piegādāta 3-6 nedēļas pēc tās publicēšanas.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 455 pages, height x width: 235x155 mm, 160 Illustrations, color; 29 Illustrations, black and white; VII, 455 p. 189 illus., 160 illus. in color., 1 Hardback
  • Sērija : Information Systems Engineering and Management 59
  • Izdošanas datums: 10-Sep-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031977084
  • ISBN-13: 9783031977084
Citas grāmatas par šo tēmu:

This book presents a diverse set of research contributions across critical domains like healthcare, agriculture, cybersecurity, communication systems, and quantum computing. Ranging from transfer learning frameworks for rice classification and federated learning improvements to facial emotion recognition and quantum-enabled tourism analytics, the chapters offer an in-depth journey into practical, scalable, and cutting-edge applications of AI. Readers also finds state-of-the-art studies on Kalman filters for weather forecasting, power-aware hardware architectures, and the revolutionary potential of explainable AI in medical imaging.
This book presents deep insights into how cognitive systems are addressing real world problems and redefining the future of smart technology.

Evaluating Transfer Learning Models for Indian Rice Classification: The
Impact of a Proposed Lightweight Deep Learning.- Defensive Classifier
Methods: Feature Extraction and 
Behavior Analysis for Prediction.- Enhancing Core Stability in Federated
Learning through Optimal Client Selection.- Machine Learning based Ensemble
Learning approach 
for Malware Family Classification Using Visual File Representations.-
Transformer Network Based Deep Learning Approach in Customised Dynamic
Dietary Endorsements for Chronic Diseases.- Style Infusion: Leveraging
Diffusion Process for Style Transfer.- Empowering Emotional Intelligence in
Healthcare: ML-Based Facial and speech Emotion Recognition for 
Patient-Centered Systems.- Confirming the need for hyperparameter tuning of
Kalman Filter in Weather Forecasting.- Hierarchy for selection of power
efficient data-path multiplier hardware for high performance applications.-
Performance Improvement in Aperture-Coupled Rectangular DRAs Using Reflector
for 5.5 GHz Wireless Communication.