Atjaunināt sīkdatņu piekrišanu

E-grāmata: Innovations in Bayesian Networks: Theory and Applications

Edited by
  • Formāts: PDF+DRM
  • Sērija : Studies in Computational Intelligence 156
  • Izdošanas datums: 10-Sep-2008
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540850663
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Studies in Computational Intelligence 156
  • Izdošanas datums: 10-Sep-2008
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540850663
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume the editors have brought together contributions from some of the most prestigious researchers in this field.



Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained.

Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.

to Bayesian Networks.- A Polemic for Bayesian Statistics.- A Tutorial on Learning with Bayesian Networks.- The Causal Interpretation of Bayesian Networks.- An Introduction to Bayesian Networks and Their Contemporary Applications.- Objective Bayesian Nets for Systems Modelling and Prognosis in Breast Cancer.- Modeling the Temporal Trend of the Daily Severity of an Outbreak Using Bayesian Networks.- An Information-Geometric Approach to Learning Bayesian Network Topologies from Data.- Causal Graphical Models with Latent Variables: Learning and Inference.- Use of Explanation Trees to Describe the State Space of a Probabilistic-Based Abduction Problem.- Toward a Generalized Bayesian Network.- A Survey of First-Order Probabilistic Models.