Atjaunināt sīkdatņu piekrišanu

E-grāmata: Integrated Approach to Modeling and Optimization in Engineering and Science

  • Formāts: 343 pages
  • Izdošanas datums: 30-Dec-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040256794
  • Formāts - PDF+DRM
  • Cena: 96,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 343 pages
  • Izdošanas datums: 30-Dec-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040256794

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An Integrated Approach to Modeling and Optimization in Engineering and Science examines the effects of experimental design, mathematical modeling, and optimization processes for solving many different problems. The experimental design method, Central Composite, Full Factorial, Taguchi, Box Behnken, and D-Optimal methods are used, and the effects of the data sets obtained by these methods on mathematical modeling are investigated.

This book will help graduates and senior undergraduates in courses on experimental design, modeling, optimization, and interdisciplinary engineering studies. It would also be of interest to R&D engineers and professionals working in scientific institutions based on design, modeling, and optimization.



An Integrated Approach to Modeling and Optimization in Engineering and Science is a technical book written with the aim to evaluate the modeling and design processes of engineering systems with an integrated approach.

Chapter
1. Introduction

Chapter
2. Design of Experiment, Mathematical Modeling, and Optimization

Chapter
3. Comparison of ANN and Neuro Regression Methods in Mathematical Modeling

Chapter
4. Evaluation of R2 as Model Assessment Criteria

Chapter
5. Questioning The Adequacy Of Using Polynomial Structures

Chapter
6. The Effect of Using the Taguchi Method in Experimental Design on Mathematical Modeling

Chapter
7. Comparison of Different Test and Validation Methods Used in Mathematical Modeling

Chatper
8. Comparison of Different Model Assessment Criteria used in Mathematical Modeling

Chapter
9. Comparison of the Effects of Experimental Design Methods on Mathematical Modeling

Chapter 10.Special Functions in Mathematical Modeling

Melih Savran earned a BS degree in mechanical engineering at Manisa Celal Bayar University in 2013. He earned MS and PhD degrees in mechanical engineering at zmir Katip Ēelebi University in 2017 and 2023, respectively. He continues to work as a researcher at the same university. His research areas include mechanics of solids, design and mathematical modeling, machine learning, stochastic optimization, and hybrid natural/synthetic composites. He has international publications on stochastic optimization and modeling in engineering, including book chapters, journal articles, and conference papers.

Levent Aydin is an Associate Professor of Mechanical Engineering at zmir Katip Ēelebi University. He earned a PhD degree in mechanical engineering at zmir Institute of Technology in 2011. His main research interests are stochastic optimization, mechanics of solids, biocomposites, biosensors, advanced engineering mathematics, hybrid neuro regression, and artificial intelligence modeling. Dr. Aydin has written more than 100 international publications on stochastic optimization and modeling in engineering, including book chapters, journal articles, and conference papers. He is also a consultant for many industrial research and development projects of international engineering firms. Dr. Aydin is the founder of the Optimization, Modeling and Applied Math Research Group (OMA-RG). He is the editor or author of Designing Engineering Structures Using Stochastic Optimization Methods, Bioelectrochemical Interface Engineering, Hybrid Natural Fiber Composites, Vegetable Fiber Composites and Their Technological Applications, and Fiber Technology for Fiber-Reinforced Composites.