Atjaunināt sīkdatņu piekrišanu

E-grāmata: Integrated Earthquake Simulation

(University of Tokyo), (University of Tokyo), (Japan Agency for Marine-Science and Technology)
  • Formāts: 190 pages
  • Izdošanas datums: 26-Sep-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000615722
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 190 pages
  • Izdošanas datums: 26-Sep-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000615722
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Integrated earthquake simulation evaluates earthquake hazards and disasters by carrying out a sequence of numerical simulations of such aspects as earthquake wave generation and propagation, structural seismic response, mass evacuation, and economic recovery processes. It combines high performance computers with automated models.



Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.

List of Figures
ix
List of Tables
xiii
Preface xv
Author Biography xvii
1 Overview of Integrated Earthquake Simulation
1(14)
1.1 Background
2(4)
1.2 Scope
6(3)
1.3 Key features
9(6)
1.3.1 Utilization of HPC
11(1)
1.3.2 Automated model construction
12(3)
2 Applications Implemented in Integrated Simulation
15(28)
2.1 Finite element method of solving wave equation
16(7)
2.1.1 Governing equation
16(1)
2.1.2 Boundary condition
17(1)
2.1.3 Solution algorithm
18(2)
2.1.4 Solution algorithm with high-performance computing
20(3)
2.2 Structural seismic response analysis
23(5)
2.2.1 Foundation of structural seismic response analysis
23(1)
2.2.2 Mass-spring model consistent with continuum mechanics model
24(3)
2.2.3 Extension of mass-spring model
27(1)
2.3 Agent-based simulations of mass evacuation
28(15)
2.3.1 Mathematical framework
30(2)
2.3.2 Hybrid model of the environment
32(2)
2.3.3 Agents
34(3)
2.3.4 Validation of constituent functions
37(3)
2.3.5 HPC extension
40(3)
3 Automated Model Construction
43(24)
3.1 Underground structures
44(3)
3.2 Structures
47(15)
3.2.1 Methodology of automated model construction
47(2)
3.2.2 Procedures of automated model construction
49(1)
3.2.3 Automated model construction of residential building
50(3)
3.2.4 Automated model construction of road bridge
53(9)
3.3 Evacuation environment
62(5)
3.3.1 Automated construction of grid and graph
63(1)
3.3.2 Approximating vehicle trajectories at intersections
64(3)
4 Examples of Integrated Earthquake Simulation
67(42)
4.1 Simulation of city blocks
69(8)
4.1.1 Problem setting
69(1)
4.1.2 Models
70(1)
4.1.3 Simulation results
71(6)
4.2 Tokyo Metropolis Earthquake
77(9)
4.2.1 Problem setting
77(1)
4.2.2 Constructed analysis models
78(2)
4.2.3 Simulation results
80(6)
4.3 Nankai Trough Earthquake
86(23)
4.3.1 Problem setting
87(1)
4.3.2 Constructed analysis models
88(3)
4.3.3 Simulation results
91(4)
4.3.4 Mass evacuation simulation
95(14)
A Conjugate Gradient Method
109(12)
A.1 Wave equation and its solution
110(1)
A.2 Preconditioner
111(5)
A.3 Finite element with parallel computation
116(5)
B Multi-Agent System
121(22)
B.1 Collision avoidance
122(9)
B.1.1 Brief introduction to ORCA scheme
122(3)
B.1.2 Implementation
125(2)
B.1.3 Defining velocity objects and ORCA half-planes
127(2)
B.1.4 Group collision avoidance
129(2)
B.1.5 Side selection for overtaking
131(1)
B.2 Interaction models
131(10)
B.2.1 Pedestrians
132(1)
B.2.2 Cars
133(1)
B.2.3 Calibrating the parameters to model specific interactions
133(8)
B.3 An automated calibration/optimization tool
141(2)
C Meta-Modeling Theory
143(8)
C.1 Structural mechanics from the continuum mechanics viewpoint
144(1)
C.2 Derivation of governing equation of bar problem
145(1)
C.3 Derivation of governing equation of beam problem
146(2)
C.4 Derivation of governing equation of torsional bar problem
148(3)
D Mathematical Treatment of Soil-Structure Interaction
151(8)
D.1 Soil-structure interaction effects
152(1)
D.2 Formulation of soil spring
152(5)
D.3 Applicability and limitation of soil spring
157(2)
Bibliography 159(10)
Index 169
Muneo Hori is current Director-General (Principal Scientist) at the Research Institute for Value-Added-Information Generation at the Japan Agency for Marine-Earth Science and Technology, and formerly Professor at the Earthquake Research Institute of the University of Tokyo. Tsuyoshi Ichmura is Professor at the Earthquake Research Institute of the University of Tokyo. Maddegedara Lalith Wijerathne is Associate Professor at the Earthquake Research Institute of the University of Tokyo.