Atjaunināt sīkdatņu piekrišanu

E-grāmata: Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 18th International Conference, CPAIOR 2021, Vienna, Austria, July 5-8, 2021, Proceedings

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume LNCS 12735 constitutes the papers of the 18th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research, CPAIOR 2021, which was held in Vienna, Austria, in 2021. Due to the COVID-19 pandemic the conference was held online. 
The 30 regular papers presented were carefully reviewed and selected from a total of 75 submissions. The conference program included a Master Class on the topic "Explanation and Verification of Machine Learning Models".


Supercharging Plant Configurations using Z3.- Why You Should Constrain
Your Machine Learned Models.- Contextual Optimization: Bridging Machine
Learning and Operations.- A Computational Study of Constraint Programming
Approaches for Resource-Constrained Project Scheduling with Autonomous
Learning Effects.- Strengthening of feasibility cuts in logic-based Benders
decomposition.- Learning Variable Activity Initialisation for Lazy Clause
Generation Solvers.- A*-based Compilation of Relaxed Decision Diagrams for
the Longest Common Subsequence Problem.- Partitioning Students into Cohorts
during COVID-19.- A Two-Phases Exact Algorithm for Optimization of Neural
Network Ensemble.- Complete Symmetry Breaking Constraints for the Class of
Uniquely Hamiltonian Graphs.-  Heavy-Tails and Randomized Restarting Beam
Search in Goal-Oriented Neural Sequence Decoding.- Combining Constraint
Programming and Temporal Decomposition Approaches - Scheduling of an
Industrial Formulation Plant.- The Traveling Social Golfer Problem: the case
of the Volleyball Nations League.- Towards a Compact SAT-based Encoding of
Itemset Mining Tasks.- A Pipe Routing Hybrid Approach based on A-Star Search
and Linear Programming.-  MDDs boost equation solving on discrete dynamical
systems.- Variable Ordering for Decision Diagrams: A Portfolio Approach.- Two
Deadline Reduction Algorithms for Scheduling Dependent Tasks on Parallel
Processors.- Improving the Filtering of Branch-And-Bound MDD solver.- On the
Usefulness of Linear Modular Arithmetic in Constraint Programming.- 
Injecting Domain Knowledge in Neural Networks: a Controlled Experiment on a
Constrained Problem.- Learning Surrogate Functions for the Short-Horizon
Planning in Same-Day Delivery Problems.- Between Steps: Intermediate
Relaxations between big-M and Convex Hull Formulations.- Logic-Based Benders
Decomposition for an Inter-modal Transportation Problem.- Checking
ConstraintSatisfaction.- Finding Subgraphs with Side Constraints.- Short-term
scheduling of production fleets in underground mines using CP-based LNS.-
Learning to Reduce State-Expanded Networks for Multi-Activity Shift
Scheduling.- SeaPearl: A Constraint Programming Solver guided by
Reinforcement Learning.- Learning to Sparsify Travelling Salesman Problem
Instances.- Optimized Item Selection to Boost Exploration for Recommender
Systems.- Improving Branch-and-Bound using Decision Diagrams and
Reinforcement Learning.- Physician Scheduling During a Pandemic.