Atjaunināt sīkdatņu piekrišanu

Intelligent Autonomy of UAVs: Advanced Missions and Future Use [Hardback]

(Universite d'Evry, France)
  • Hardback
  • Cena: 165,25 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam

Intelligent Autonomy of UAVs: Advanced Missions and Future Use provides an approach to the formulation of the fundamental task typical to any mission and provides guidelines of how this task can be solved by different generic robotic problems. As such, this book aims to provide a systems engineering approach to UAV projects, discovering the real problems that need to be resolved independently of the application.

After an introduction to the rapidly evolving field of aerial robotics, the book presents topics such as autonomy, mission analysis, human-UAV teams, homogeneous and heterogeneous UAV teams, and finally, UAV-UGV teams. It then covers generic robotic problems such as orienteering and coverage. The book next introduces deployment, patrolling, and foraging, while the last part of the book tackles an important application: aerial search, tracking, and surveillance.

This book is meant for both scientists and practitioners. For practitioners, it presents existing solutions that are categorized according to various missions: surveillance and reconnaissance, 3D mapping, urban monitoring, precision agriculture, forestry, disaster assessment and monitoring, security, industrial plant inspection, etc.

For scientists, it provides an overview of generic robotic problems such as coverage and orienteering; deployment, patrolling and foraging; search, tracking, and surveillance. The design and analysis of algorithms raise a unique combination of questions from many fields, including robotics, operational research, control theory, and computer science.

Preface xiii
Chapter 1 Introduction
1(68)
1.1 Introduction
1(1)
1.2 Use of Unmanned Aerial Systems
2(13)
1.2.1 Regulations
3(1)
1.2.1.1 U.S. regulations
4(2)
1.2.1.2 European regulations
6(2)
1.2.1.3 U.K. regulations
8(1)
1.2.2 Risk analysis
9(4)
1.2.3 Financial potential
13(1)
1.2.4 Privacy issue
14(1)
1.3 Unmanned Aerial System
15(9)
1.3.1 Ground control station
17(1)
1.3.2 UAV operator
18(1)
1.3.2.1 Training environment
19(1)
1.3.2.2 Assistant systems
20(1)
1.3.3 UAV simulation
21(2)
1.3.3.1 Architecture
23(1)
1.3.3.2 Human---UAV interface considerations
24(1)
1.4 Case Studies
24(32)
1.4.1 Industrial applications
26(1)
1.4.1.1 Infrastructure monitoring
27(2)
1.4.1.2 Photovoltaic modules monitoring
29(1)
1.4.2 Civil engineering
30(1)
1.4.2.1 3-D building imaging
31(1)
1.4.2.2 Roof insulation inspection
32(1)
1.4.2.3 Bridge inspection
32(1)
1.4.3 Safety and security
33(1)
1.4.3.1 Traffic monitoring
33(3)
1.4.3.2 Nuclear, biological, and chemical accident
36(1)
1.4.3.3 Landmine detection
36(1)
1.4.4 Environmental applications
37(1)
1.4.4.1 Geo-referencing
38(1)
1.4.4.2 Earth observation and mapping
38(2)
1.4.4.3 Atmospheric monitoring
40(1)
1.4.4.4 Wildlife evaluation
41(1)
1.4.5 Precision agriculture
41(2)
1.4.5.1 Biomass inspection
43(2)
1.4.5.2 Soil monitoring
45(1)
1.4.5.3 Forestry
45(1)
1.4.6 Disaster relief
46(1)
1.4.6.1 Search and rescue
47(5)
1.4.6.2 Fires monitoring
52(3)
1.4.7 Aided communication system
55(1)
1.5 Conclusion
56(13)
Bibliography
57(12)
Chapter 2 Mission Framework
69(78)
2.1 Introduction
69(1)
2.2 Autonomy
70(15)
2.2.1 Levels of autonomy
71(3)
2.2.2 Decision making
74(1)
2.2.2.1 Human impact
74(1)
2.2.2.2 Operational autonomy
75(4)
2.2.3 Fundamentals
79(1)
2.2.3.1 Graph theory basics
79(2)
2.2.3.2 Temporal logic
81(2)
2.2.3.3 Sensor coverage
83(2)
2.3 Homogeneous Uav Team
85(19)
2.3.1 Modeling
86(1)
2.3.1.1 SISO systems
86(1)
2.3.1.2 MIMO systems
87(1)
2.3.2 Planning
88(6)
2.3.3 Cooperative path following
94(1)
2.3.3.1 Formation control
94(1)
2.3.3.2 Cooperative mission
95(2)
2.3.4 Communication
97(1)
2.3.4.1 Basics
97(2)
2.3.4.2 Information architectures
99(2)
2.3.5 Task assignment
101(1)
2.3.5.1 Intra-path constraints
101(1)
2.3.5.2 Urban environments
102(2)
2.4 Heterogeneous Uavs Team
104(3)
2.4.1 Consensus algorithm
104(1)
2.4.2 Task assignment
105(1)
2.4.2.1 Dynamic resource allocation
105(1)
2.4.2.2 Auction-based approach
105(1)
2.4.2.3 Deadlock problem
106(1)
2.5 Uav--Ugv Teams
107(5)
2.5.1 Coordination framework
108(1)
2.5.2 Relative localization approach
109(1)
2.5.3 Logistics service stations
110(1)
2.5.3.1 Continuous approximation model
111(1)
2.5.3.2 Interoperable framework
112(1)
2.6 Mission Analysis
112(24)
2.6.1 Methodology
113(1)
2.6.1.1 Photography with UAV
113(7)
2.6.1.2 Emergency response with UAV
120(1)
2.6.2 Mission specificity
121(1)
2.6.2.1 High---level language
122(5)
2.6.2.2 Model checking of missions
127(2)
2.6.3 Human-UAV Team
129(1)
2.6.3.1 Human--UAV Interaction
130(3)
2.6.3.2 Operator versus UAV
133(3)
2.7 Conclusion
136(11)
Bibliography
137(10)
Chapter 3 Orienteering and Coverage
147(82)
3.1 Introduction
147(1)
3.2 Operational Research Preliminaries
147(20)
3.2.1 General vehicle routing problem
148(1)
3.2.2 Traveling salesperson problem
148(2)
3.2.2.1 Deterministic traveling salesperson
150(3)
3.2.2.2 Stochastic traveling salesperson
153(3)
3.2.3 Postperson problem
156(1)
3.2.3.1 Chinese postperson problem
156(5)
3.2.3.2 Rural postperson problem
161(4)
3.2.4 Knapsack problem
165(2)
3.3 Orienteering
167(10)
3.3.1 Orienteering problem formulation
167(1)
3.3.1.1 Nominal orienteering problem
167(2)
3.3.1.2 Robust orienteering problem
169(2)
3.3.1.3 UAV team orienteering problem
171(3)
3.3.2 UAV sensor selection
174(3)
3.4 Coverage
177(40)
3.4.1 Barrier coverage
179(1)
3.4.1.1 Barrier coverage approach
180(2)
3.4.1.2 Sensor deployment and coverage
182(1)
3.4.2 Perimeter coverage
183(1)
3.4.2.1 Coverage of a circle
183(2)
3.4.2.2 Dynamic boundary coverage
185(2)
3.4.3 Area coverage
187(1)
3.4.3.1 Preliminaries
187(5)
3.4.3.2 Boustrophedon cellular decomposition
192(2)
3.4.3.3 Spiral path
194(4)
3.4.3.4 Distributed coverage
198(19)
3.5 Conclusion
217(12)
Bibliography
219(10)
Chapter 4 Deployment, Patrolling, and Foraging
229(78)
4.1 Introduction
229(1)
4.2 Aerial Deployment
230(27)
4.2.1 Deployment problem
230(1)
4.2.1.1 Deployment methodology
231(5)
4.2.1.2 Deployment strategies
236(8)
4.2.2 Mobile sensor network
244(1)
4.2.2.1 Aerial networks
245(4)
4.2.2.2 Visual coverage
249(6)
4.2.2.3 Wireless sensor network
255(2)
4.3 Patrolling
257(19)
4.3.1 Perimeter patrol
259(4)
4.3.2 Area cooperative patrolling
263(1)
4.3.2.1 Multiple depot multi-TSP
264(3)
4.3.2.2 Exploration
267(9)
4.4 Foraging
276(19)
4.4.1 Problem formulation
277(1)
4.4.1.1 Abstract model
277(1)
4.4.1.2 Continuous foraging
278(2)
4.4.1.3 Foraging algorithms
280(4)
4.4.1.4 Anchoring
284(2)
4.4.2 Aerial manipulation
286(1)
4.4.2.1 Aerial transportation
287(4)
4.4.2.2 Coupled dynamics
291(4)
4.5 Conclusion
295(12)
Bibliography
297(10)
Chapter 5 Search, Tracking, and Surveillance
307(70)
5.1 Introduction
307(3)
5.2 Basics of Search Theory and Decision Support
310(13)
5.2.1 Types of search problems
311(7)
5.2.2 Camera properties
318(3)
5.2.3 Human operator
321(2)
5.3 Information Gathering
323(6)
5.3.1 Detection
325(1)
5.3.1.1 Agent model of a missing person
326(2)
5.3.1.2 Proximity relationship
328(1)
5.4 Mobility of Targets
329(10)
5.4.1 Stationary target
330(2)
5.4.2 Moving target
332(1)
5.4.2.1 Target capturability
332(1)
5.4.2.2 Trajectory optimization
333(1)
5.4.2.3 Tracking a ground moving target
334(4)
5.4.2.4 Moving source seeking
338(1)
5.5 Target Search and Tracking
339(10)
5.5.1 Cooperative monitoring
339(1)
5.5.1.1 Optimal distributed searching in the plane
339(2)
5.5.1.2 Distributed estimation and control
341(1)
5.5.1.3 Temporal planning approach
342(3)
5.5.2 Communications
345(1)
5.5.2.1 Asynchronous communication protocol
345(2)
5.5.2.2 Mobile ad-hoc network
347(2)
5.6 Surveillance
349(18)
5.6.1 Stochastic strategies for surveillance
350(2)
5.6.1.1 Analysis methods
352(1)
5.6.1.2 Single UAV investigations
353(1)
5.6.1.3 Multi--UAV investigations
353(1)
5.6.2 Urban surveillance
354(2)
5.6.3 Monitoring wildfire frontiers
356(2)
5.6.3.1 Surveillance of risk sensitive areas
358(2)
5.6.3.2 Cooperative surveillance
360(2)
5.6.3.3 Cooperative relay tracking
362(1)
5.6.3.4 Path planning with temporal logic constraints
363(3)
5.6.4 Probabilistic weather forecasting
366(1)
5.7 Conclusion
367(10)
Bibliography
369(8)
Chapter 6 General Conclusions
377(2)
Chapter 7 Acronyms
379(12)
Index 391
Yasmina Bestaoui Sebbane earned her PhD in Control and Computer Engineering from Ecole Nationale Superieure de Mecanique, Nantes, France, in 1989 (currently Ecole Centrale de Nantes), and the Habilitation to Direct Research in Robotics, from the University of Evry, France, in 2000.

She has been with the Electrical Engineering Department of the University of Evry since 1999. From 1989 to 1998, she was with the Mechanical Engineering Department of the University of NANTES. From September 1997 to July 1998, she was a Visiting Associate Professor in the Computer Science department at the Naval Post Graduate School, Monterey, California, USA. Her research interests include control, planning, and decision making of unmanned systems, particularly unmanned aerial vehicles and robots. She is the author of three other books.