nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
1. Introduction
2. Beam Feedback Control
2.1. Beam Feedback Overview
2.2. Problem Formulation
2.3. Beam Response Matrix Identification
2.4. Static Linear Feedback Controller Design
2.4.1. Difficulties in Inversing a Response Matrix
2.4.2. Singular Value Decomposition
2.4.3. Response Matrix Inverse with SVD
2.4.4. Response Matrix Inverse with Least-square Method
2.4.5. Robust Control Design
2.5. Summary
3. Beam Optimization
3.1. Beam Optimization Overview
3.1.1. Optimizations in Beam Control3.1.2. Formulation of Optimization Problems
3.1.3. Considerations of Online Optimization
3.2. Optimization Algorithms
3.2.1. A Test Function
3.2.2. Spontaneous Correlation Optimization
3.2.3. Random Walk Optimization
3.2.4. Robust Conjugate Direction Search
3.2.5. Genetic Algorithm
3.2.6. Particle Swarm Optimization
3.2.7. Summary of Optimization Algorithms
3.3. Beam Optimization Examples and Tools
3.3.1. Practical Considerations
2
3.3.2. FEL Optimization with SCO3.3.3. Operating Point Switching
3.3.4. Optimization Tools
3.4. Summary
4. Machine Learning for Beam Control
4.1. Overview of Machine Learning
4.1.1. Introduction
4.1.2. Machine Learning Models
4.1.3. Typical Applications of Machine Learning
4.2. Accelerator Modeling with Machine Learning
4.2.1. Artificial Neural Network Regression Model
4.2.2. Gaussian Process Regression Model
4.3. Applications of Machine-learning Models in Beam Control
4.3.1. Surrogate Models of Beam Response
4.3.2. Response Matrix Estimation with NN Surrogate Model
4.3.3. Beam Optimization with NN Surrogate Model
4.3.4. Feedforward Control with NN Surrogate Model
4.3.5. Beam Optimization with GP Surrogate Model
4.4. Feedback Control with Reinforcement Learning
4.4.1. Introduction to Reinforcement Learning
4.4.2. Feedback Controller Design with Natural Actor-critic Algorithm
4.4.3. Example: RF Cavity Controller Design
4.4.4. Example: Static Feedback Controller Design
4.4.5. Further Reading
4.5. Other Applications of Machine-learning in Accelerators
4.5.1. Virtual Diagnostics4.5.2. Fault Prediction
4.5.3. Classification
4.6. Summary