|
|
1 | (10) |
|
|
1 | (3) |
|
1.2 Intelligent Control Architecture |
|
|
4 | (1) |
|
1.3 Approaches to Intelligent Control |
|
|
5 | (1) |
|
1.4 Experimental Rig of Flexible Arm |
|
|
6 | (1) |
|
|
7 | (4) |
|
|
8 | (3) |
|
|
11 | (28) |
|
|
11 | (1) |
|
2.2 Dynamics of Robot Manipulator |
|
|
12 | (1) |
|
2.3 Dynamics of Flexible-Arm |
|
|
13 | (10) |
|
2.3.1 Strength and Stiffness |
|
|
14 | (2) |
|
|
16 | (1) |
|
2.3.3 Experimental Flexible Arm |
|
|
17 | (1) |
|
2.3.4 Printed Armature Motor |
|
|
18 | (2) |
|
2.3.5 Motor Drive Amplifier |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3.7 Computer Interfacing |
|
|
22 | (1) |
|
2.3.8 Operating Characteristics |
|
|
22 | (1) |
|
2.4 Previous Research and Developments |
|
|
23 | (3) |
|
2.5 Dynamic Equations of Flexible Robotic Arm |
|
|
26 | (7) |
|
2.5.1 Development of the Simulation Algorithm |
|
|
28 | (1) |
|
|
29 | (1) |
|
2.5.3 End-Point Displacement |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.5.5 State-Space Formulation |
|
|
32 | (1) |
|
2.6 Some Simulation Results |
|
|
33 | (3) |
|
|
34 | (2) |
|
|
36 | (3) |
|
|
36 | (3) |
|
|
39 | (18) |
|
|
39 | (2) |
|
|
41 | (3) |
|
3.3 Control of Flexible Arm |
|
|
44 | (3) |
|
|
47 | (1) |
|
|
47 | (4) |
|
3.5.1 Joint Based Collocated Controller |
|
|
49 | (1) |
|
3.5.2 Hybrid Collocated and Non-Collocated Controller |
|
|
50 | (1) |
|
3.6 Alternative Control Approaches |
|
|
51 | (2) |
|
3.6.1 Intelligent Control Approaches |
|
|
52 | (1) |
|
|
53 | (4) |
|
|
53 | (4) |
|
4 Mathematics of Fuzzy Control |
|
|
57 | (38) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (9) |
|
4.3.1 Piecewise Linear MF |
|
|
59 | (1) |
|
4.3.2 Nonlinear Smooth MF |
|
|
60 | (1) |
|
|
61 | (2) |
|
4.3.4 Polynomial or Spline-Based Functions |
|
|
63 | (2) |
|
4.3.5 Irregular Shaped MF |
|
|
65 | (2) |
|
|
67 | (1) |
|
4.5 Features of Linguistic Variables |
|
|
68 | (2) |
|
|
70 | (2) |
|
|
72 | (5) |
|
|
72 | (1) |
|
4.7.2 Methods for Construction of Rule-Base |
|
|
73 | (3) |
|
4.7.3 Properties of Fuzzy Rules |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (4) |
|
4.9.1 Mamdani Fuzzy Inference |
|
|
79 | (1) |
|
4.9.2 Sugeno Fuzzy Inference |
|
|
80 | (1) |
|
4.9.3 Tsukamoto Fuzzy Inference |
|
|
81 | (1) |
|
|
82 | (8) |
|
4.10.1 Defuzzification Methods |
|
|
82 | (6) |
|
4.10.2 Properties of Defuzzification |
|
|
88 | (1) |
|
4.10.3 Analysis of Defuzzification Methods |
|
|
89 | (1) |
|
|
90 | (5) |
|
|
90 | (5) |
|
|
95 | (42) |
|
|
95 | (6) |
|
5.1.1 Fuzzification for Control |
|
|
96 | (1) |
|
5.1.2 Inference Mechanism for Control |
|
|
97 | (1) |
|
5.1.3 Rule-Base for Control |
|
|
98 | (2) |
|
5.1.4 Defuzzification for Control |
|
|
100 | (1) |
|
5.2 Theoretical Analysis of Fuzzy Controllers |
|
|
101 | (7) |
|
5.2.1 Consideration of Process Variables |
|
|
102 | (2) |
|
5.2.2 Types of Fuzzy Controllers |
|
|
104 | (4) |
|
5.3 Fuzzy Controller for Flexible Arm |
|
|
108 | (3) |
|
5.3.1 Input-Output Selection |
|
|
110 | (1) |
|
5.4 PD-Like Fuzzy Logic Controller |
|
|
111 | (7) |
|
5.4.1 PD-Like Fuzzy Controller with Error and Change of Error |
|
|
111 | (4) |
|
5.4.2 PD-Like Fuzzy Controller with Error and Velocity |
|
|
115 | (3) |
|
5.5 PI-Like Fuzzy Controller |
|
|
118 | (4) |
|
5.6 Integral Windup Action |
|
|
122 | (1) |
|
5.7 PID-Like Fuzzy Controller |
|
|
123 | (2) |
|
5.8 PD-PI-Type-like Fuzzy Controller |
|
|
125 | (4) |
|
5.9 Some Experimental Results on PD-PI FLC |
|
|
129 | (2) |
|
5.10 Choice of Scaling Factors |
|
|
131 | (1) |
|
|
132 | (5) |
|
|
133 | (4) |
|
6 Evolutionary-Fuzzy Control |
|
|
137 | (42) |
|
|
137 | (5) |
|
6.2 Overview of Evolutionary Algorithms |
|
|
142 | (5) |
|
6.2.1 Evolutionary Programming |
|
|
143 | (1) |
|
6.2.2 Evolution Strategies |
|
|
143 | (1) |
|
6.2.3 Genetic Programming |
|
|
144 | (1) |
|
6.2.4 Differential Evolution |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (2) |
|
6.3 Evolutionary Fuzzy Control |
|
|
147 | (3) |
|
6.4 Merging MFs and Rule-Bases of PD-PI FLC |
|
|
150 | (5) |
|
6.5 Optimising FLC Parameters Using GA |
|
|
155 | (12) |
|
|
157 | (1) |
|
6.5.2 Chromosome Representation for MFs |
|
|
157 | (2) |
|
6.5.3 Chromosome Representation for Rule-Base |
|
|
159 | (1) |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
162 | (3) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
6.6 Some Experimental Results |
|
|
167 | (6) |
|
|
173 | (6) |
|
|
173 | (6) |
|
|
179 | (38) |
|
|
179 | (1) |
|
7.2 Neural Networks and Architectures |
|
|
180 | (3) |
|
7.3 Combinations of Neural Networks and Fuzzy Controllers |
|
|
183 | (6) |
|
7.3.1 NN for Correcting FLC |
|
|
185 | (1) |
|
7.3.2 NN for Learning Rules |
|
|
185 | (1) |
|
7.3.3 NN for Determining MFs |
|
|
186 | (2) |
|
7.3.4 NN for Learning/Tuning Scaling Parameters |
|
|
188 | (1) |
|
7.4 Scaling Parameters of PD-PI Fuzzy Controller |
|
|
189 | (2) |
|
7.5 Reducing the Number of Scaling Parameters |
|
|
191 | (1) |
|
7.6 Neural Network for Tuning Scaling Factors |
|
|
192 | (6) |
|
7.6.1 Backpropagation Learning with LinearActivation Function |
|
|
193 | (3) |
|
7.6.2 Learning with Non-Linear Activation Function |
|
|
196 | (2) |
|
7.7 Multi-Resolution Learning |
|
|
198 | (4) |
|
7.7.1 Adaptive Neural Activation Functions |
|
|
200 | (2) |
|
7.8 Some Experimental Results |
|
|
202 | (10) |
|
|
212 | (5) |
|
|
213 | (4) |
|
8 Evolutionary-Neuro-Fuzzy Control |
|
|
217 | (26) |
|
|
217 | (2) |
|
8.2 Integration of Fuzzy Systems, Neural Networks and Evolutionary Algorithms |
|
|
219 | (7) |
|
8.3 EA-NN Cooperative Combination |
|
|
226 | (6) |
|
8.3.1 EA for Weight Learning |
|
|
226 | (3) |
|
8.3.2 EA for Weights and Activation Functions Learning |
|
|
229 | (3) |
|
8.4 Optimal Sigmoid Function Shape Learning |
|
|
232 | (1) |
|
8.5 Evolutionary-Neuro-Fuzzy PD-PI-like Controller |
|
|
233 | (3) |
|
8.5.1 GA-Based Neuro-Fuzzy Controller |
|
|
234 | (2) |
|
8.6 Some Experimental Results |
|
|
236 | (4) |
|
|
240 | (3) |
|
|
240 | (3) |
|
9 Stability Analysis of Intelligent Controllers |
|
|
243 | (26) |
|
|
243 | (1) |
|
9.2 Mathematical Preliminaries |
|
|
244 | (8) |
|
9.3 Qualitative Stability Analysis of Fuzzy Controllers |
|
|
252 | (6) |
|
9.4 Passivity Approach to Stability Analysis of Fuzzy Controllers |
|
|
258 | (2) |
|
9.5 Stability Analysis of PD-PI-like Fuzzy Controller |
|
|
260 | (2) |
|
|
262 | (7) |
|
|
264 | (5) |
|
|
269 | (12) |
|
|
269 | (1) |
|
10.2 Future Research Directions |
|
|
270 | (1) |
|
10.3 Adaptive Neural Network Control |
|
|
271 | (8) |
|
10.3.1 Adaptive Neuro-Fuzzy Controller |
|
|
271 | (3) |
|
10.3.2 B-Spline Neural Network |
|
|
274 | (1) |
|
|
274 | (2) |
|
10.3.4 Binary Neural Network-Based Fuzzy Controller |
|
|
276 | (3) |
|
|
279 | (2) |
|
|
279 | (2) |
Index |
|
281 | |