Preface |
|
xv | |
|
1 Rumor Detection and Tracing its Source to Prevent Cyber-Crimes on Social Media |
|
|
1 | (30) |
|
|
|
|
2 | (2) |
|
|
4 | (3) |
|
1.2.1 Types of Social Networks |
|
|
4 | (3) |
|
|
7 | (2) |
|
|
7 | (1) |
|
1.3.2 Types of Cyber-Crimes |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.3.2.3 Buying Illegal Things |
|
|
8 | (1) |
|
1.3.2.4 Posting Videos of Criminal Activity |
|
|
8 | (1) |
|
1.3.3 Cyber-Crimes on Social Networks |
|
|
8 | (1) |
|
|
9 | (6) |
|
|
9 | (1) |
|
1.4.1.1 Naive Bayes Classifier |
|
|
10 | (3) |
|
1.4.1.2 Support Vector Machine |
|
|
13 | (1) |
|
1.4.2 Combating Misinformation on Instagram |
|
|
14 | (1) |
|
1.5 Factors to Detect Rumor Source |
|
|
15 | (7) |
|
|
15 | (1) |
|
|
16 | (1) |
|
1.5.1.2 Network Observation |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
1.5.3 Centrality Measures |
|
|
21 | (1) |
|
1.5.3.1 Degree Centrality |
|
|
21 | (1) |
|
1.5.3.2 Closeness Centrality |
|
|
21 | (1) |
|
1.5.3.3 Betweenness Centrality |
|
|
22 | (1) |
|
1.6 Source Detection in Network |
|
|
22 | (5) |
|
1.6.1 Single Source Detection |
|
|
23 | (1) |
|
1.6.1.1 Network Observation |
|
|
23 | (2) |
|
1.6.1.2 Query-Based Approach |
|
|
25 | (1) |
|
1.6.1.3 Anti-Rumor-Based Approach |
|
|
26 | (1) |
|
1.6.2 Multiple Source Detection |
|
|
26 | (1) |
|
|
27 | (4) |
|
|
28 | (3) |
|
2 Internet of Things (IoT) and Machine to Machine (M2M) Communication Techniques for Cyber Crime Prediction |
|
|
31 | (26) |
|
Jaiprakash Narain Dwivedi |
|
|
|
32 | (1) |
|
2.2 Advancement of Internet |
|
|
33 | (1) |
|
2.3 Internet of Things (IoT) and Machine to Machine (M2M) Communication |
|
|
34 | (4) |
|
2.4 A Definition of Security Frameworks |
|
|
38 | (1) |
|
2.5 M2M Devices and Smartphone Technology |
|
|
39 | (2) |
|
2.6 Explicit Hazards to M2M Devices Declared by Smartphone Challenges |
|
|
41 | (2) |
|
2.7 Security and Privacy Issues in IoT |
|
|
43 | (5) |
|
2.7.1 Dynamicity and Heterogeneity |
|
|
43 | (1) |
|
2.7.2 Security for Integrated Operational World with Digital World |
|
|
44 | (1) |
|
2.7.3 Information Safety with Equipment Security |
|
|
44 | (1) |
|
2.7.4 Data Source Information |
|
|
44 | (1) |
|
2.7.5 Information Confidentiality |
|
|
44 | (1) |
|
|
44 | (4) |
|
2.8 Protection in Machine to Machine Communication |
|
|
48 | (4) |
|
2.9 Use Cases for M2M Portability |
|
|
52 | (1) |
|
|
53 | (4) |
|
|
54 | (3) |
|
3 Crime Predictive Model Using Big Data Analytics |
|
|
57 | (22) |
|
|
|
|
58 | (2) |
|
3.1.1 Geographic Information System (GIS) |
|
|
59 | (1) |
|
|
60 | (3) |
|
3.2.1 Different Methods for Crime Data Analysis |
|
|
62 | (1) |
|
|
63 | (2) |
|
3.4 Technological Analysis |
|
|
65 | (4) |
|
3.4.1 Hadoop and Map Reduce |
|
|
65 | (1) |
|
3.4.1.1 Hadoop Distributed File System (HDFS) |
|
|
65 | (1) |
|
|
65 | (2) |
|
|
67 | (1) |
|
3.4.2.1 Analysis of Crime Data using Hive |
|
|
67 | (1) |
|
3.4.2.2 Data Analytic Module With Hive |
|
|
68 | (1) |
|
|
68 | (1) |
|
3.4.3.1 Pre-Processing and Sqoop |
|
|
68 | (1) |
|
3.4.3.2 Data Migration Module With Sqoop |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
3.4.3.5 R-Tool Analyse Crime Data |
|
|
69 | (1) |
|
3.4.3.6 Correlation Matrix |
|
|
69 | (1) |
|
|
69 | (3) |
|
3.6 Architecture for Crime Technical Model |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (5) |
|
|
75 | (4) |
|
4 The Role of Remote Sensing and GIS in Military Strategy to Prevent Terror Attacks |
|
|
79 | (16) |
|
|
|
80 | (1) |
|
|
81 | (1) |
|
4.3 Discussion and Analysis |
|
|
82 | (1) |
|
4.4 Role of Remote Sensing and GIS |
|
|
83 | (1) |
|
|
83 | (4) |
|
4.5.1 Spatial Data Management |
|
|
85 | (1) |
|
4.5.2 Battlefield Management |
|
|
85 | (1) |
|
|
86 | (1) |
|
4.6 Mapping Techniques Used for Defense Purposes |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
4.7.2 GIS Potential in Military |
|
|
89 | (1) |
|
4.8 Future Sphere of GIS in Military Science |
|
|
89 | (2) |
|
4.8.1 Defense Site Management |
|
|
90 | (1) |
|
4.8.2 Spatial Data Management |
|
|
90 | (1) |
|
4.8.3 Intelligence Capability Approach |
|
|
90 | (1) |
|
4.8.4 Data Converts Into Information |
|
|
90 | (1) |
|
4.8.5 Defense Estate Management |
|
|
91 | (1) |
|
|
91 | (1) |
|
4.9.1 Problems Regarding the Uses of Remote Sensing and GIS |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (3) |
|
|
93 | (2) |
|
5 Text Mining for Secure Cyber Space |
|
|
95 | (24) |
|
|
|
|
95 | (2) |
|
|
97 | (4) |
|
5.2.1 Text Mining With Latent Semantic Analysis |
|
|
100 | (1) |
|
5.3 Latent Semantic Analysis |
|
|
101 | (1) |
|
|
102 | (2) |
|
5.5 Detailed Work Flow of Proposed Approach |
|
|
104 | (7) |
|
5.5.1 Defining the Stop Words |
|
|
106 | (1) |
|
|
107 | (2) |
|
5.5.3 Proposed Algorithm: A Hybrid Approach |
|
|
109 | (2) |
|
5.6 Results and Discussion |
|
|
111 | (4) |
|
5.6.1 Analysis Using Hybrid Approach |
|
|
111 | (4) |
|
|
115 | (4) |
|
|
115 | (4) |
|
6 Analyses on Artificial Intelligence Framework to Detect Crime Pattern |
|
|
119 | (14) |
|
|
|
|
|
120 | (1) |
|
|
121 | (1) |
|
6.3 Proposed Clustering for Detecting Crimes |
|
|
122 | (2) |
|
6.3.1 Data Pre-Processing |
|
|
123 | (1) |
|
6.3.2 Object-Oriented Model |
|
|
124 | (1) |
|
6.3.3 MCML Classification |
|
|
124 | (1) |
|
|
124 | (1) |
|
6.3.5 Consensus Clustering |
|
|
124 | (1) |
|
6.4 Performance Evaluation |
|
|
124 | (7) |
|
|
125 | (1) |
|
|
125 | (6) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (2) |
|
|
132 | (1) |
|
7 A Biometric Technology-Based Framework for Tackling and Preventing Crimes |
|
|
133 | (28) |
|
|
|
|
|
134 | (1) |
|
|
135 | (9) |
|
7.2.1 Biometric Systems Technologies |
|
|
137 | (4) |
|
7.2.2 Biometric Recognition Framework |
|
|
141 | (1) |
|
7.2.3 Biometric Applications/Usages |
|
|
142 | (2) |
|
7.3 Surveillance Systems (CCTV) |
|
|
144 | (7) |
|
|
146 | (1) |
|
|
146 | (3) |
|
7.3.3 Fusion of Data From Multiple Cameras |
|
|
149 | (1) |
|
7.3.4 Expanding the Use of CCTV |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
7.4 Legality to Surveillance and Biometrics vs. Privacy and Human Rights |
|
|
151 | (2) |
|
7.5 Proposed Work (Biometric-Based CCTV System) |
|
|
153 | (5) |
|
7.5.1 Biometric Surveillance System |
|
|
154 | (1) |
|
7.5.1.1 System Component and Flow Diagram |
|
|
154 | (2) |
|
|
156 | (2) |
|
|
158 | (3) |
|
|
159 | (2) |
|
8 Rule-Based Approach for Botnet Behavior Analysis |
|
|
161 | (20) |
|
|
|
|
|
|
161 | (2) |
|
|
163 | (3) |
|
|
166 | (5) |
|
|
166 | (1) |
|
8.3.2 Botnet Detection Techniques |
|
|
167 | (1) |
|
8.3.3 Communication Architecture |
|
|
168 | (3) |
|
|
171 | (4) |
|
|
175 | (2) |
|
8.6 Conclusion and Future Scope |
|
|
177 | (4) |
|
|
177 | (4) |
|
9 Securing Biometric Framework with Cryptanalysis |
|
|
181 | (28) |
|
|
|
|
|
|
|
182 | (2) |
|
9.2 Basics of Biometric Systems |
|
|
184 | (8) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
189 | (3) |
|
|
192 | (1) |
|
9.3.1 Inconsistent Presentation |
|
|
192 | (1) |
|
9.3.2 Unreproducible Presentation |
|
|
192 | (1) |
|
9.3.3 Fault Signal/Representational Accession |
|
|
193 | (1) |
|
9.4 Performance of Biometric System |
|
|
193 | (2) |
|
9.5 Justification of Biometric System |
|
|
195 | (1) |
|
9.5.1 Authentication ("Is this individual really the authenticate user or not?") |
|
|
195 | (1) |
|
9.5.2 Recognition ("Is this individual in the database?") |
|
|
196 | (1) |
|
9.5.3 Concealing ("Is this a needed person?") |
|
|
196 | (1) |
|
9.6 Assaults on a Biometric System |
|
|
196 | (3) |
|
9.6.1 Zero Effort Attacks |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
9.6.2.4 DoB (Denial of Benefit) |
|
|
199 | (1) |
|
|
199 | (1) |
|
9.7 Biometric Cryptanalysis: The Fuzzy Vault Scheme |
|
|
199 | (4) |
|
9.8 Conclusion & Future Work |
|
|
203 | (6) |
|
|
205 | (4) |
|
10 The Role of Big Data Analysis in Increasing the Crime Prediction and Prevention Rates |
|
|
209 | (12) |
|
|
Abdulrazzaq H. A. Al-Ahdal |
|
|
|
10.1 Introduction: An Overview of Big Data and Cyber Crime |
|
|
210 | (1) |
|
10.2 Techniques for the Analysis of BigData |
|
|
211 | (5) |
|
10.3 Important Big Data Security Techniques |
|
|
216 | (3) |
|
|
219 | (2) |
|
|
219 | (2) |
|
11 Crime Pattern Detection Using Data Mining |
|
|
221 | (16) |
|
|
|
|
221 | (1) |
|
|
222 | (2) |
|
11.3 Methods and Procedures |
|
|
224 | (3) |
|
|
227 | (3) |
|
11.5 Analysis Model and Architectural Design |
|
|
230 | (3) |
|
11.6 Several Criminal Analysis Methods in Use |
|
|
233 | (2) |
|
11.7 Conclusion and Future Work |
|
|
235 | (2) |
|
|
235 | (2) |
|
12 Attacks and Security Measures in Wireless Sensor Network |
|
|
237 | (32) |
|
|
|
|
|
|
|
238 | (1) |
|
12.2 Layered Architecture of WSN |
|
|
239 | (2) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
12.3 Security Threats on Different Layers in WSN |
|
|
241 | (5) |
|
12.3.1 Threats on Physical Layer |
|
|
241 | (1) |
|
12.3.1.1 Eavesdropping Attack |
|
|
241 | (1) |
|
|
242 | (1) |
|
12.3.1.3 Imperil or Compromised Node Attack |
|
|
242 | (1) |
|
12.3.1.4 Replication Node Attack |
|
|
242 | (1) |
|
12.3.2 Threats on Data Link Layer |
|
|
242 | (1) |
|
12.3.2.1 Collision Attack |
|
|
243 | (1) |
|
12.3.2.2 Denial of Service (DoS) Attack |
|
|
243 | (1) |
|
12.3.2.3 Intelligent Jamming Attack |
|
|
243 | (1) |
|
12.3.3 Threats on Network Layer |
|
|
243 | (1) |
|
|
243 | (1) |
|
12.3.3.2 Gray Hole Attack |
|
|
243 | (1) |
|
12.3.3.3 Sink Hole Attack |
|
|
244 | (1) |
|
12.3.3.4 Hello Flooding Attack |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
244 | (1) |
|
12.3.3.7 Black Hole Attack |
|
|
244 | (1) |
|
12.3.3.8 Worm Hole Attack |
|
|
245 | (1) |
|
12.3.4 Threats on Transport Layer |
|
|
245 | (1) |
|
12.3.4.1 De-Synchronization Attack |
|
|
245 | (1) |
|
|
245 | (1) |
|
12.3.5 Threats on Application Layer |
|
|
245 | (1) |
|
12.3.5.1 Malicious Code Attack |
|
|
245 | (1) |
|
12.3.5.2 Attack on Reliability |
|
|
246 | (1) |
|
12.3.6 Threats on Multiple Layer |
|
|
246 | (1) |
|
12.3.6.1 Man-in-the-Middle Attack |
|
|
246 | (1) |
|
|
246 | (1) |
|
|
246 | (1) |
|
12.4 Threats Detection at Various Layers in WSN |
|
|
246 | (6) |
|
12.4.1 Threat Detection on Physical Layer |
|
|
247 | (1) |
|
12.4.1.1 Compromised Node Attack |
|
|
247 | (1) |
|
12.4.1.2 Replication Node Attack |
|
|
247 | (1) |
|
12.4.2 Threat Detection on Data Link Layer |
|
|
247 | (1) |
|
12.4.2.1 Denial of Service Attack |
|
|
247 | (1) |
|
12.4.3 Threat Detection on Network Layer |
|
|
248 | (1) |
|
12.4.3.1 Black Hole Attack |
|
|
248 | (1) |
|
12.4.3.2 Worm Hole Attack |
|
|
248 | (1) |
|
12.4.3.3 Hello Flooding Attack |
|
|
249 | (1) |
|
|
249 | (1) |
|
12.4.3.5 Gray Hole Attack |
|
|
250 | (1) |
|
12.4.3.6 Sink Hole Attack |
|
|
250 | (1) |
|
12.4.4 Threat Detection on the Transport Layer |
|
|
251 | (1) |
|
|
251 | (1) |
|
12.4.5 Threat Detection on Multiple Layers |
|
|
251 | (1) |
|
|
251 | (1) |
|
12.5 Various Parameters for Security Data Collection in WSN |
|
|
252 | (4) |
|
12.5.1 Parameters for Security of Information Collection |
|
|
252 | (1) |
|
12.5.1.1 Information Grade |
|
|
252 | (1) |
|
12.5.1.2 Efficacy and Proficiency |
|
|
253 | (1) |
|
12.5.1.3 Reliability Properties |
|
|
253 | (1) |
|
12.5.1.4 Information Fidelity |
|
|
253 | (1) |
|
12.5.1.5 Information Isolation |
|
|
254 | (1) |
|
12.5.2 Attack Detection Standards in WSN |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
12.5.2.5 Fault Forbearance |
|
|
255 | (1) |
|
12.6 Different Security Schemes in WSN |
|
|
256 | (8) |
|
12.6.1 Clustering-Based Scheme |
|
|
256 | (1) |
|
12.6.2 Cryptography-Based Scheme |
|
|
256 | (1) |
|
12.6.3 Cross-Checking-Based Scheme |
|
|
256 | (1) |
|
12.6.4 Overhearing-Based Scheme |
|
|
257 | (1) |
|
12.6.5 Acknowledgement-Based Scheme |
|
|
257 | (1) |
|
12.6.6 Trust-Based Scheme |
|
|
257 | (1) |
|
12.6.7 Sequence Number Threshold-Based Scheme |
|
|
258 | (1) |
|
12.6.8 Intrusion Detection System-Based Scheme |
|
|
258 | (1) |
|
12.6.9 Cross-Layer Collaboration-Based Scheme |
|
|
258 | (6) |
|
|
264 | (5) |
|
|
264 | (5) |
|
13 Large Sensing Data Flows Using Cryptic Techniques |
|
|
269 | (22) |
|
|
|
270 | (1) |
|
13.2 Data Flow Management |
|
|
271 | (2) |
|
13.2.1 Data Flow Processing |
|
|
271 | (1) |
|
|
272 | (1) |
|
13.2.3 Data Privacy and Data Reliability |
|
|
272 | (1) |
|
13.2.3.1 Security Protocol |
|
|
272 | (1) |
|
13.3 Design of Big Data Stream |
|
|
273 | (4) |
|
13.3.1 Data Stream System Architecture |
|
|
273 | (1) |
|
13.3.1.1 Intrusion Detection Systems (IDS) |
|
|
274 | (1) |
|
|
275 | (1) |
|
13.3.3 Threat Approaches for Attack Models |
|
|
276 | (1) |
|
13.4 Utilization of Security Methods |
|
|
277 | (3) |
|
|
278 | (1) |
|
|
279 | (1) |
|
13.4.3 New Node Authentication |
|
|
279 | (1) |
|
13.4.4 Cryptic Techniques |
|
|
280 | (1) |
|
13.5 Analysis of Security on Attack |
|
|
280 | (1) |
|
13.6 Artificial Intelligence Techniques for Cyber Crimes |
|
|
281 | (3) |
|
13.6.1 Cyber Crime Activities |
|
|
282 | (1) |
|
13.6.2 Artificial Intelligence for Intrusion Detection |
|
|
282 | (2) |
|
13.6.3 Features of an IDPS |
|
|
284 | (1) |
|
|
284 | (7) |
|
|
285 | (6) |
|
14 Cyber-Crime Prevention Methodology |
|
|
291 | (21) |
|
|
|
|
292 | (5) |
|
14.1.1 Evolution of Cyber Crime |
|
|
294 | (2) |
|
14.1.2 Cybercrime can be Broadly Defined as Two Types |
|
|
296 | (1) |
|
14.1.3 Potential Vulnerable Sectors of Cybercrime |
|
|
296 | (1) |
|
14.2 Credit Card Frauds and Skimming |
|
|
297 | (2) |
|
|
297 | (1) |
|
|
298 | (1) |
|
14.2.3 Technicality Behind Juice Jacking |
|
|
299 | (1) |
|
14.3 Hacking Over Public WiFi or the MITM Attacks |
|
|
299 | (7) |
|
|
300 | (2) |
|
|
302 | (1) |
|
|
303 | (1) |
|
14.3.4 Weak Session Token Generation/Predictable Session Token Generation |
|
|
304 | (1) |
|
|
304 | (1) |
|
14.3.6 Cross-Site Scripting (XSS) Attack |
|
|
305 | (1) |
|
|
306 | (1) |
|
14.5 Denial of Service Attack |
|
|
307 | (2) |
|
14.6 Dark Web and Deep Web Technologies |
|
|
309 | (2) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (1) |
References |
|
312 | (1) |
Index |
|
313 | |