Atjaunināt sīkdatņu piekrišanu

E-grāmata: Intelligent Data Engineering and Automated Learning - IDEAL 2016: 17th International Conference, Yangzhou, China, October 12-14, 2016, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 17 International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2016, held in Yangzhou, China, in October 2016.





The 68 full papers presented were carefully reviewed and selected from 115 submissions. They provide a valuable and timely sample of latest research outcomes in data engineering and automated learning ranging from methodologies, frameworks, and techniques to applications including various topics such as evolutionary algorithms; deep learning; neural networks; probabilistic modeling; particle swarm intelligence; big data analysis; applications in regression, classification, clustering, medical and biological modeling and predication; text processing and image analysis.





 
Research outcomes in data engineering and automated learning.- Methodologies, frameworks, and techniques.- Applications including various topics such as evolutionary algorithms; deep learning; neural networks; probabilistic modeling; particle swarm intelligence; big data analysis.- Applications in regression, classification, clustering, medical and biological modeling and predication.- Text processing and image analysis.