|
1 Newton-Like Methods on Generalized Banach Spaces and Fractional Calculus |
|
|
1 | (22) |
|
|
1 | (1) |
|
1.2 Generalized Banach Spaces |
|
|
2 | (3) |
|
1.3 Semilocal Convergence |
|
|
5 | (3) |
|
1.4 Special Cases and Applications |
|
|
8 | (6) |
|
1.5 Applications to Fractional Calculus |
|
|
14 | (9) |
|
|
20 | (3) |
|
2 Semilocal Convegence of Newton-Like Methods and Fractional Calculus |
|
|
23 | (16) |
|
|
23 | (1) |
|
2.2 Generalized Banach Spaces |
|
|
24 | (2) |
|
2.3 Semilocal Convergence |
|
|
26 | (4) |
|
2.4 Special Cases and Applications |
|
|
30 | (1) |
|
2.5 Applications to Fractional Calculus |
|
|
30 | (9) |
|
|
36 | (3) |
|
3 Convergence of Iterative Methods and Generalized Fractional Calculus |
|
|
39 | (18) |
|
|
39 | (1) |
|
3.2 Generalized Banach Spaces |
|
|
40 | (2) |
|
3.3 Semilocal Convergence |
|
|
42 | (4) |
|
3.4 Special Cases and Applications |
|
|
46 | (1) |
|
3.5 Applications to Generalized Fractional Calculus |
|
|
47 | (10) |
|
|
56 | (1) |
|
4 Fixed Point Techniques and Generalized Right Fractional Calculus |
|
|
57 | (18) |
|
|
57 | (1) |
|
4.2 Generalized Banach Spaces |
|
|
58 | (2) |
|
4.3 Semilocal Convergence |
|
|
60 | (4) |
|
4.4 Special Cases and Applications |
|
|
64 | (1) |
|
4.5 Applications to Generalized Right Fractional Calculus |
|
|
65 | (10) |
|
|
74 | (1) |
|
5 Approximating Fixed Points and k-Fractional Calculus |
|
|
75 | (20) |
|
|
75 | (1) |
|
5.2 Generalized Banach Spaces |
|
|
76 | (2) |
|
5.3 Semilocal Convergence |
|
|
78 | (4) |
|
5.4 Special Cases and Applications |
|
|
82 | (1) |
|
5.5 Applications to k-Fractional Calculus |
|
|
83 | (12) |
|
|
93 | (2) |
|
6 Iterative Methods and Generalized g-Fractional Calculus |
|
|
95 | (12) |
|
|
95 | (1) |
|
6.2 Generalized Banach Spaces |
|
|
96 | (2) |
|
6.3 Applications to g-Fractional Calculus |
|
|
98 | (9) |
|
|
106 | (1) |
|
7 Unified Convergence Analysis for Iterative Algorithms and Fractional Calculus |
|
|
107 | (20) |
|
|
107 | (1) |
|
|
108 | (6) |
|
7.3 Applications to Fractional Calculus |
|
|
114 | (13) |
|
|
124 | (3) |
|
8 Convergence Analysis for Extended Iterative Algorithms and Fractional and Vector Calculus |
|
|
127 | (22) |
|
|
127 | (1) |
|
|
128 | (6) |
|
8.3 Applications to Fractional and Vector Calculus |
|
|
134 | (15) |
|
|
147 | (2) |
|
9 Convergence Analysis for Extended Iterative Algorithms and Fractional Calculus |
|
|
149 | (14) |
|
|
149 | (1) |
|
|
150 | (6) |
|
9.3 Applications to Fractional Calculus |
|
|
156 | (7) |
|
|
161 | (2) |
|
10 Secant-Like Methods and Fractional Calculus |
|
|
163 | (14) |
|
|
163 | (1) |
|
10.2 Convergence Analysis |
|
|
164 | (5) |
|
10.3 Applications to Right Fractional Calculus |
|
|
169 | (8) |
|
|
174 | (3) |
|
11 Secant-Like Methods and Modified g-Fractional Calculus |
|
|
177 | (20) |
|
|
177 | (1) |
|
11.2 Convergence Analysis |
|
|
178 | (5) |
|
11.3 Applications to Modified g-Fractional Calculus |
|
|
183 | (14) |
|
|
196 | (1) |
|
12 Secant-Like Algorithms and Generalized Fractional Calculus |
|
|
197 | (18) |
|
|
197 | (1) |
|
12.2 Convergence Analysis |
|
|
198 | (5) |
|
12.3 Applications to g-Fractional Calculus |
|
|
203 | (12) |
|
|
214 | (1) |
|
13 Secant-Like Methods and Generalized g-Fractional Calculus of Canavati-Type |
|
|
215 | (16) |
|
|
215 | (1) |
|
13.2 Convergence Analysis |
|
|
216 | (5) |
|
13.3 Applications to g-Fractional Calculus of Canavati Type |
|
|
221 | (10) |
|
|
230 | (1) |
|
14 Iterative Algorithms and Left-Right Caputo Fractional Derivatives |
|
|
231 | (14) |
|
|
231 | (1) |
|
14.2 Convergence Analysis |
|
|
232 | (7) |
|
14.3 Applications to Fractional Calculus |
|
|
239 | (6) |
|
|
243 | (2) |
|
15 Iterative Methods on Banach Spaces with a Convergence Structure and Fractional Calculus |
|
|
245 | (18) |
|
|
245 | (1) |
|
15.2 Banach Spaces with Convergence Structure |
|
|
246 | (2) |
|
15.3 Semilocal Convergence |
|
|
248 | (4) |
|
15.4 Special Cases and Examples |
|
|
252 | (2) |
|
15.5 Applications to Fractional Calculus |
|
|
254 | (9) |
|
|
262 | (1) |
|
16 Inexact Gauss-Newton Method for Singular Equations |
|
|
263 | (20) |
|
|
263 | (3) |
|
|
266 | (4) |
|
|
270 | (3) |
|
|
273 | (5) |
|
16.4.1 Proof of Theorem 16.9 |
|
|
274 | (2) |
|
16.4.2 Proof of Theorem 16.12 |
|
|
276 | (1) |
|
16.4.3 Proof of Theorem 16.14 |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
279 | (4) |
|
|
279 | (4) |
|
17 The Asymptotic Mesh Independence Principle |
|
|
283 | (14) |
|
|
283 | (1) |
|
17.2 The Mesh Independence Principle |
|
|
284 | (10) |
|
|
294 | (3) |
|
|
295 | (2) |
|
18 Ball Convergence of a Sixth Order Iterative Method |
|
|
297 | (12) |
|
|
297 | (2) |
|
18.2 Local Convergence Analysis |
|
|
299 | (7) |
|
|
306 | (3) |
|
|
306 | (3) |
|
19 Broyden's Method with Regularly Continuous Divided Differences |
|
|
309 | (8) |
|
|
309 | (1) |
|
19.2 Semilocal Convergence Analysis of Broyden's Method |
|
|
310 | (7) |
|
|
316 | (1) |
|
20 Left General Fractional Monotone Approximation |
|
|
317 | (20) |
|
20.1 Introduction and Preparation |
|
|
317 | (10) |
|
|
327 | (7) |
|
20.3 Applications (to Theorem 20.15) |
|
|
334 | (3) |
|
|
335 | (2) |
|
21 Right General Fractional Monotone Approximation Theory |
|
|
337 | (16) |
|
21.1 Introduction and Preparation |
|
|
337 | (7) |
|
|
344 | (7) |
|
21.3 Applications (to Theorem 21.14) |
|
|
351 | (2) |
|
|
351 | (2) |
|
22 Left Generalized High Order Fractional Monotone Approximation |
|
|
353 | (20) |
|
|
353 | (9) |
|
|
362 | (9) |
|
22.3 Applications (to Theorem 22.16) |
|
|
371 | (2) |
|
|
371 | (2) |
|
23 Right Generalized High Order Fractional Monotone Approximation |
|
|
373 | (18) |
|
|
373 | (7) |
|
|
380 | (9) |
|
23.3 Applications (to Theorem 23.15) |
|
|
389 | (2) |
|
|
389 | (2) |
|
24 Advanced Fractional Taylor's Formulae |
|
|
391 | (22) |
|
|
391 | (1) |
|
|
392 | (21) |
|
|
412 | (1) |
|
25 Generalized Canavati Type Fractional Taylor's Formulae |
|
|
413 | (8) |
|
|
413 | (8) |
|
|
420 | (1) |
Index |
|
421 | |