Atjaunināt sīkdatņu piekrišanu

E-grāmata: Intelligent Techniques for Predictive Data Analytics

Edited by (Guru Nanak University, India), Edited by (Manipal University Jaipur, India), Edited by (King Khalid University, Saudi Arabia), Edited by (Manipal University Jaipur, India)
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Jun-2024
  • Izdevniecība: Wiley-IEEE Press
  • Valoda: eng
  • ISBN-13: 9781394227983
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 138,00 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Jun-2024
  • Izdevniecība: Wiley-IEEE Press
  • Valoda: eng
  • ISBN-13: 9781394227983
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Comprehensive resource covering tools and techniques used for predictive analytics with practical applications across various industries

Intelligent Techniques for Predictive Data Analytics provides an in-depth introduction of the tools and techniques used for predictive analytics, covering applications in cyber security, network security, data mining, and machine learning across various industries. Each chapter offers a brief introduction on the subject to make the text accessible regardless of background knowledge.

Readers will gain a clear understanding of how to use data processing, classification, and analysis to support strategic decisions, such as optimizing marketing strategies and customer relationship management and recommendation systems, improving general business operations, and predicting occurrence of chronic diseases for better patient management.

Traditional data analytics uses dashboards to illustrate trends and outliers, but with large data sets, this process is labor-intensive and time-consuming. This book provides everything readers need to save time by performing deep, efficient analysis without human bias and time constraints. A section on current challenges in the field is also included.

Intelligent Techniques for Predictive Data Analytics covers sample topics such as:

  • Models to choose from in predictive modeling, including classification, clustering, forecast, outlier, and time series models
  • Price forecasting, quality optimization, and insect and disease plant and monitoring in agriculture
  • Fraud detection and prevention, credit scoring, financial planning, and customer analytics
  • Big data in smart grids, smart grid analytics, and predictive smart grid quality monitoring, maintenance, and load forecasting
  • Management of uncertainty in predictive data analytics and probable future developments in the field

Intelligent Techniques for Predictive Data Analytics is an essential resource on the subject for professionals and researchers working in data science or data management seeking to understand the different models of predictive analytics, along with graduate students studying data science courses and professionals and academics new to the field.