List of Figures |
|
xv | |
List of Tables |
|
xix | |
Foreword |
|
xxi | |
Preface |
|
xxv | |
I Basics of Image and Video Processing |
|
1 | (72) |
|
1 Basics of Image Processing |
|
|
3 | (34) |
|
1.1 Introduction to Digital Image Processing |
|
|
3 | (2) |
|
1.1.1 Why Digital Image Processing? |
|
|
3 | (1) |
|
1.1.2 What Is Digital Image? |
|
|
4 | (1) |
|
1.1.3 What Is Digital Image Processing? |
|
|
4 | (1) |
|
1.2 Digital Image Processing System |
|
|
5 | (3) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.3 Digital Image Processing Methods |
|
|
8 | (6) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.3.5 Image Reconstruction |
|
|
10 | (1) |
|
1.3.5.1 Analytical Reconstruction |
|
|
10 | (1) |
|
1.3.5.2 Iterative Reconstruction |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.3.10 Image Registration |
|
|
14 | (1) |
|
1.4 Digital Image Segmentation |
|
|
14 | (18) |
|
1.4.1 Classification of Image Segmentation Techniques |
|
|
15 | (1) |
|
|
15 | (8) |
|
1.4.2.1 Classification of Edges |
|
|
16 | (1) |
|
1.4.2.2 Gradient Operator |
|
|
16 | (2) |
|
1.4.2.3 Laplacian Operator |
|
|
18 | (1) |
|
1.4.2.4 Marr Hildreth Edge Detector |
|
|
19 | (2) |
|
1.4.2.5 Isolated Point Detection |
|
|
21 | (1) |
|
|
21 | (1) |
|
1.4.2.7 Canny Edge Detector |
|
|
21 | (2) |
|
|
23 | (4) |
|
|
24 | (1) |
|
1.4.3.2 Regional Processing |
|
|
25 | (1) |
|
1.4.3.3 Global Processing Using Hough Transform |
|
|
25 | (2) |
|
|
27 | (3) |
|
1.4.4.1 Multiple Thresholding |
|
|
27 | (1) |
|
1.4.4.2 Global Thresholding |
|
|
28 | (2) |
|
1.4.4.3 Local Thresholding |
|
|
30 | (1) |
|
|
30 | (1) |
|
1.4.6 Region Splitting and Merging |
|
|
30 | (1) |
|
1.4.7 Watershed-Based Segmentation |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (4) |
|
1.5.1 Television Signal Processing |
|
|
32 | (1) |
|
1.5.2 Satellite Image Processing |
|
|
33 | (1) |
|
1.5.3 Medical Image Processing |
|
|
34 | (1) |
|
|
34 | (1) |
|
1.5.5 Visual Communications |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
2 Basics of Video Compression and Motion Analysis |
|
|
37 | (22) |
|
|
37 | (9) |
|
2.1.1 What Is Video Compression? |
|
|
37 | (1) |
|
2.1.2 Why Video Compression? |
|
|
37 | (1) |
|
2.1.3 Types of Video Compression |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (5) |
|
2.1.5.1 Reduction of the Resolution |
|
|
40 | (1) |
|
2.1.5.2 Motion Estimation |
|
|
41 | (3) |
|
2.1.5.3 Discrete Cosine Transform |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
2.1.6 Video Compression Standards |
|
|
45 | (1) |
|
|
46 | (4) |
|
|
46 | (2) |
|
2.2.1.1 Issues in Motion Segmentations |
|
|
46 | (1) |
|
2.2.1.2 Main Attributes of a Motion Segmentation Algorithm |
|
|
47 | (1) |
|
2.2.2 Motion Segmentation Algorithms |
|
|
48 | (2) |
|
|
48 | (1) |
|
2.2.2.2 Statistical Theory |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
2.2.2.5 Factorization Technique |
|
|
50 | (1) |
|
|
50 | (6) |
|
2.3.1 Estimation of Optical Flow |
|
|
50 | (6) |
|
2.3.1.1 Horn-Schunck Optical Flow Estimation |
|
|
51 | (2) |
|
2.3.1.2 Lucas Kanade Optical Flow Estimation |
|
|
53 | (3) |
|
|
56 | (2) |
|
2.4.1 Surveillance and Security |
|
|
56 | (1) |
|
2.4.2 Content-Based Video Indexing and Retrieval |
|
|
56 | (1) |
|
2.4.3 Automatic Highlight Generation of Sports Videos |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (14) |
|
3.1 What Is Background Modeling? |
|
|
59 | (1) |
|
3.2 Background Modeling Techniques |
|
|
59 | (8) |
|
3.2.1 Non-Statistical Background Modeling Methods |
|
|
61 | (2) |
|
3.2.1.1 Background Modeling Independent of Time |
|
|
61 | (1) |
|
3.2.1.2 Improved Basic Background Modeling |
|
|
61 | (1) |
|
3.2.1.3 Long-Term Average Background Modeling |
|
|
62 | (1) |
|
3.2.2 Statistical Background Modeling Methods |
|
|
63 | (4) |
|
|
63 | (1) |
|
|
63 | (2) |
|
3.2.2.3 Expectation Maximization GMM Algorithm |
|
|
65 | (1) |
|
3.2.2.4 GMM-Based Background Detection |
|
|
66 | (1) |
|
3.3 Shadow Detection and Removal |
|
|
67 | (4) |
|
3.3.1 Shadow Removal for Traffic Flow Detection |
|
|
69 | (2) |
|
|
71 | (2) |
II Object Tracking |
|
73 | (66) |
|
|
75 | (16) |
|
4.1 Shape-Based Object Classification |
|
|
76 | (1) |
|
4.2 Motion-Based Object Classification |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
4.3 Viola Jones Object Detection Framework |
|
|
77 | (4) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
4.3.4 Cascading of Classifiers |
|
|
81 | (1) |
|
4.3.5 Results and Discussion |
|
|
81 | (1) |
|
4.4 Object Classification Using Convolutional Neural Networks |
|
|
81 | (7) |
|
4.4.1 What Are Convolutional Neural Networks? |
|
|
82 | (3) |
|
4.4.1.1 Convolution Stage |
|
|
83 | (1) |
|
4.4.1.2 Non-Linear Activation Stage |
|
|
83 | (1) |
|
|
84 | (1) |
|
4.4.2 Convolutional Neural Network Models |
|
|
85 | (1) |
|
4.4.2.1 Two-Layer Convolutional Neural Network |
|
|
85 | (1) |
|
4.4.2.2 Three-Layer Convolutional Neural Network |
|
|
86 | (1) |
|
4.4.2.3 Intuition for Using Deep Neural Networks |
|
|
86 | (1) |
|
4.4.3 Results and Discussion |
|
|
86 | (2) |
|
4.4.3.1 Experimental Datasets |
|
|
86 | (1) |
|
4.4.3.2 Results and Discussion |
|
|
87 | (1) |
|
4.5 Object Classification Using Regional Convolutional Neural Net- works |
|
|
88 | (1) |
|
4.5.1 Steps of RCNN Algorithm |
|
|
88 | (1) |
|
4.5.2 Results and Discussion |
|
|
88 | (1) |
|
|
89 | (2) |
|
5 Human Activity Recognition |
|
|
91 | (24) |
|
5.1 Motion History Image-Based Human Activity Recognition |
|
|
91 | (7) |
|
5.1.1 Motion History Image |
|
|
91 | (2) |
|
|
93 | (1) |
|
5.1.2.1 Hu's Invariant Moments |
|
|
94 | (1) |
|
5.1.3 Human Activity Recognition |
|
|
94 | (4) |
|
5.1.3.1 Classification Using Hu Moments |
|
|
96 | (1) |
|
5.1.3.2 Projection and Displacement Features |
|
|
96 | (1) |
|
5.1.3.3 Experimental Discussion |
|
|
97 | (1) |
|
|
98 | (5) |
|
|
98 | (1) |
|
5.2.2 Hidden Markov Models |
|
|
99 | (1) |
|
|
100 | (1) |
|
5.2.3 The Three Fundamental Problems of HMM |
|
|
100 | (3) |
|
5.2.3.1 Likelihood Evaluation |
|
|
101 | (1) |
|
5.2.3.2 State Sequence Decoding |
|
|
101 | (2) |
|
5.2.3.3 HMM Parameter Estimation |
|
|
103 | (1) |
|
5.2.4 Limitations of Hidden Markov Models |
|
|
103 | (1) |
|
5.3 HMM-Based Activity Recognition |
|
|
103 | (7) |
|
5.3.1 Shape-Based Features |
|
|
104 | (2) |
|
5.3.1.1 Discrete Fourier Transform |
|
|
105 | (1) |
|
5.3.1.2 Principal Component Analysis |
|
|
105 | (1) |
|
5.3.1.3 K means Clustering |
|
|
105 | (1) |
|
5.3.2 Optical Flow-Based Features |
|
|
106 | (3) |
|
5.3.2.1 Lucas Kanade Optical Flow Method |
|
|
106 | (1) |
|
|
107 | (2) |
|
5.3.3 Implementation and Results |
|
|
109 | (1) |
|
5.4 Dynamic Time Warping-Based Activity Recognition |
|
|
110 | (2) |
|
5.4.1 What Is Dynamic Time Warping? |
|
|
110 | (2) |
|
|
112 | (1) |
|
5.5 Abnormal Activity Recognition |
|
|
112 | (2) |
|
5.6 Challenges of Intelligent Human Activity Recognition |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (24) |
|
|
115 | (3) |
|
6.1.1 What Is Video Object Tracking? |
|
|
115 | (1) |
|
6.1.2 Tracking Challenges |
|
|
115 | (1) |
|
6.1.3 Steps of Video Object Tracking System |
|
|
116 | (2) |
|
6.1.3.1 Background Identification |
|
|
117 | (1) |
|
6.1.3.2 Foreground Object Detection |
|
|
117 | (1) |
|
|
118 | (1) |
|
6.1.3.4 Handling the Occlusion Problem |
|
|
118 | (1) |
|
|
118 | (6) |
|
6.2.1 What Is a Kalman Filter? |
|
|
118 | (1) |
|
6.2.2 How Does a Kalman Filter Work? |
|
|
119 | (1) |
|
6.2.3 Kalman Filter Cycle |
|
|
119 | (1) |
|
6.2.4 Basic Theory of Kalman Filter |
|
|
120 | (3) |
|
6.2.4.1 Prediction Equations |
|
|
120 | (1) |
|
|
121 | (1) |
|
6.2.4.3 Measurement Equations |
|
|
122 | (1) |
|
|
123 | (1) |
|
6.3 Region-Based Tracking |
|
|
124 | (1) |
|
6.4 Contour-Based Tracking |
|
|
125 | (1) |
|
6.5 Feature-Based Tracking |
|
|
126 | (2) |
|
6.5.1 Feature-Based Tracking Algorithm |
|
|
126 | (4) |
|
6.5.1.1 Feature Selection |
|
|
126 | (1) |
|
6.5.1.2 Sum-of-Squared-Difference Criterion |
|
|
127 | (1) |
|
6.5.1.3 Pyramidal Decomposition |
|
|
127 | (1) |
|
|
128 | (2) |
|
|
130 | (3) |
|
6.7.1 Limitations of the KLT Tracker |
|
|
132 | (1) |
|
6.8 Mean-Shift-Based Tracking |
|
|
133 | (2) |
|
6.8.1 What Is Mean Shift? |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (1) |
|
6.9 Applications of Tracking Algorithms |
|
|
135 | (3) |
|
6.9.1 Trajectory-Based Unusual Human Movement Recognition |
|
|
135 | (6) |
|
6.9.1.1 Closed Path Detection |
|
|
136 | (1) |
|
6.9.1.2 Spiral Path Detection |
|
|
136 | (2) |
|
|
138 | (1) |
III Surveillance Systems |
|
139 | (34) |
|
7 Camera Network for Surveillance |
|
|
141 | (16) |
|
7.1 Types of CCTV Cameras |
|
|
141 | (4) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
7.1.10 High-Definition Cameras |
|
|
145 | (1) |
|
|
145 | (2) |
|
7.2.1 What Is a Smart Camera? |
|
|
145 | (1) |
|
7.2.2 Components of Smart Cameras |
|
|
146 | (1) |
|
7.2.3 Why Do We Need a Smart Camera? |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (2) |
|
|
147 | (1) |
|
7.3.2.2 Complementary Metal Oxide Semiconductor |
|
|
148 | (1) |
|
7.4 Multiple View Geometry |
|
|
148 | (1) |
|
|
149 | (1) |
|
7.5.1 What Is Camera Networking? |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (2) |
|
|
152 | (1) |
|
7.7.1 Camera Placement Algorithm for Region with Obstacles |
|
|
152 | (1) |
|
|
153 | (1) |
|
7.9 Multiple Camera Coordination and Cooperation |
|
|
154 | (1) |
|
|
155 | (2) |
|
8 Surveillance Systems and Applications |
|
|
157 | (16) |
|
|
157 | (1) |
|
8.1.1 Components of Video Surveillance Systems |
|
|
157 | (1) |
|
8.2 Video Content Analytics |
|
|
158 | (2) |
|
|
158 | (1) |
|
8.2.2 Commercial Applications |
|
|
158 | (1) |
|
8.2.3 Video Object Tracking |
|
|
159 | (1) |
|
8.3 Baggage Exchange Detection |
|
|
160 | (5) |
|
8.3.1 Object Detection Using GMM |
|
|
160 | (3) |
|
8.3.1.1 Background Subtraction |
|
|
161 | (1) |
|
8.3.1.2 Gaussian Mixture Model |
|
|
162 | (1) |
|
8.3.2 Tracking Using a Kalman Filter |
|
|
163 | (1) |
|
8.3.3 Labelling of Different Objects |
|
|
163 | (1) |
|
8.3.4 Identification of Baggage and Person |
|
|
163 | (1) |
|
8.3.5 Waning System in Case of Exchange |
|
|
164 | (1) |
|
|
164 | (1) |
|
8.4 Fence-Crossing Detection |
|
|
165 | (3) |
|
8.4.1 Proposed Fence-Crossing Detection System |
|
|
165 | (2) |
|
8.4.1.1 Foreground Extraction |
|
|
165 | (1) |
|
8.4.1.2 Feature Extraction and Selection |
|
|
166 | (1) |
|
|
166 | (1) |
|
8.4.2 Experimental Results |
|
|
167 | (1) |
|
8.5 Military Applications |
|
|
168 | (2) |
|
8.5.1 The Need for Automation |
|
|
168 | (1) |
|
8.5.2 Basic Design of Surveillance Systems |
|
|
169 | (1) |
|
|
170 | (2) |
|
8.6.1 Road Transportation |
|
|
170 | (1) |
|
8.6.2 Rail Transportation |
|
|
170 | (1) |
|
8.6.3 Maritime Transportation |
|
|
171 | (1) |
|
8.6.3.1 Challenges in Maritime Transportation |
|
|
171 | (1) |
|
|
172 | (1) |
Bibliography |
|
173 | (6) |
Index |
|
179 | |