Atjaunināt sīkdatņu piekrišanu

E-grāmata: Interactions in Multiagent Systems: Fairness, Social Optimality and Individual Rationality

  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Apr-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662494707
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Apr-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662494707

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Thisbook mainly aims at solving the problems in both cooperative and competitivemulti-agent systems (MASs), exploring aspects such as how agents caneffectively learn to achieve the shared optimal solution based on their localinformation and how they can learn to increase their individual utility byexploiting the weakness of their opponents. The book describes fundamental andadvanced techniques of how multi-agent systems can be engineered towards thegoal of ensuring fairness, social optimality, and individual rationality; awide range of further relevant topics are also covered both theoretically andexperimentally. The book will be beneficial to researchers in the fields ofmulti-agent systems, game theory and artificial intelligence in general, as wellas practitioners developing practical multi-agent systems.

Introduction.- Background and Previous Work.- Fairness in Cooperative Multiagent Systems.- Social Optimality in Cooperative Multiagent Systems.- Individual Rationality in Competitive Multiagent Systems.- Social Optimality in Competitive Multiagent Systems.- Conclusion.
1 Introduction
1(6)
1.1 Overview of the
Chapters
2(1)
1.2 Guide to the Book
3(4)
References
5(2)
2 Background and Previous Work
7(20)
2.1 Background
7(3)
2.1.1 Single-Shot Normal-Form Game
7(2)
2.1.2 Repeated Games
9(1)
2.2 Cooperative Multiagent Systems
10(9)
2.2.1 Achieving Nash Equilibrium
10(3)
2.2.2 Achieving Fairness
13(3)
2.2.3 Achieving Social Optimality
16(3)
2.3 Competitive Multiagent Systems
19(8)
2.3.1 Achieving Nash Equilibrium
19(1)
2.3.2 Maximizing Individual Benefits
20(1)
2.3.3 Achieving Pareto-Optimality
21(2)
References
23(4)
3 Fairness in Cooperative Multiagent Systems
27(44)
3.1 An Adaptive Periodic Strategy for Achieving Fairness
28(18)
3.1.1 Motivation
28(2)
3.1.2 Problem Specification
30(2)
3.1.3 An Adaptive Periodic Strategy
32(4)
3.1.4 Properties of the Adaptive Strategy
36(4)
3.1.5 Experimental Evaluations
40(6)
3.2 Game-Theoretic Fairness Models
46(25)
3.2.1 Incorporating Fairness into Agent Interactions Modeled as Two-Player Normal-Form Games
46(10)
3.2.2 Incorporating Fairness into Infinitely Repeated Games with Conflicting Interests for Conflict Elimination
56(13)
References
69(2)
4 Social Optimality in Cooperative Multiagent Systems
71(44)
4.1 Reinforcement Social Learning of Coordination in Cooperative Games
72(10)
4.1.1 Social Learning Framework
73(4)
4.1.2 Experimental Evaluations
77(5)
4.2 Reinforcement Social Learning of Coordination in General-Sum Games
82(18)
4.2.1 Social Learning Framework
82(6)
4.2.2 Analysis of the Learning Performance Under the Social Learning Framework
88(1)
4.2.3 Experimental Evaluations
89(11)
4.3 Achieving Socially Optimal Allocations Through Negotiation
100(15)
4.3.1 Multiagent Resource Allocation Problem Through Negotiation
101(1)
4.3.2 The APSOPA Protocol to Reach Socially Optimal Allocation
102(6)
4.3.3 Convergence of APSOPA to Socially Optimal Allocation
108(2)
4.3.4 Experimental Evaluation
110(2)
References
112(3)
5 Individual Rationality in Competitive Multiagent Systems
115(28)
5.1 Introduction
115(2)
5.2 Negotiation Model
117(2)
5.3 ABiNeS: An Adaptive Bilateral Negotiating Strategy
119(6)
5.3.1 Acceptance-Threshold (AT) Component
121(1)
5.3.2 Next-Bid (NB) Component
122(2)
5.3.3 Acceptance-Condition (AC) Component
124(1)
5.3.4 Termination-Condition (TC) Component
125(1)
5.4 Experimental Simulations and Evaluations
125(16)
5.4.1 Experimental Settings
126(2)
5.4.2 Experimental Results and Analysis: Efficiency
128(2)
5.4.3 Detailed Analysis of ABiNeS Strategy
130(3)
5.4.4 The Empirical Game-Theoretic Analysis: Robustness
133(8)
5.5 Conclusion
141(2)
References
141(2)
6 Social Optimality in Competitive Multiagent Systems
143(28)
6.1 Achieving Socially Optimal Solutions in the Context of Infinitely Repeated Games
143(15)
6.1.1 Learning Environment and Goal
144(3)
6.1.2 TaFSO: A Learning Approach Toward SOSNE Outcomes
147(5)
6.1.3 Experimental Simulations
152(6)
6.2 Achieving Socially Optimal Solutions in the Social Learning Framework
158(13)
6.2.1 Social Learning Environment and Goal
159(2)
6.2.2 Learning Framework
161(3)
6.2.3 Experimental Simulations
164(5)
References
169(2)
7 Conclusion
171(4)
Reference
173(2)
A The 57 Structurally Distinct Games 175