Atjaunināt sīkdatņu piekrišanu

E-grāmata: Interconnecting Data Centers Using VPLS (Ensure Business Continuance on Virtualized Networks by Implementing Layer 2 Connectivity Across Layer 3)

  • Formāts: 384 pages
  • Sērija : Networking Technology
  • Izdošanas datums: 16-Jun-2009
  • Izdevniecība: Cisco Press
  • Valoda: eng
  • ISBN-13: 9781587059940
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 27,23 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 384 pages
  • Sērija : Networking Technology
  • Izdošanas datums: 16-Jun-2009
  • Izdevniecība: Cisco Press
  • Valoda: eng
  • ISBN-13: 9781587059940
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

 

As data centers grow in size and complexity, enterprises are adopting server virtualization technologies such as VMware, VMotion, NIC teaming, and server clustering to achieve increased efficiency of resources and to ensure business resilience. However, these technologies often involve significant expense and challenges to deal with complex multisite interconnections and to maintain the high availability of network resources and applications.

 

Interconnecting Data Centers Using VPLS presents Virtual Private LAN Service (VPLS) based solutions that provide high-speed, low-latency network and Spanning Tree Protocol (STP) isolation between data centers resulting in significant cost savings and a highly resilient virtualized network. The design guidance, configuration examples, and best practices presented in this book have been validated under the Cisco Validated Design (CVD) System Assurance program to facilitate faster, more reliable and more predictable deployments. The presented solutions include detailed information about issues that relate to large Layer 2 bridging domains and offer guidance for extending VLANs over Layer 3 networks using VPLS technology.

 

Implementing this breakthrough Data Center Interconnect (DCI) strategy will evolve your network to support current server virtualization techniques and to provide a solid foundation for emerging approaches. The book takes you from the legacy deployment models for DCI, problems associated with extending Layer 2 networks, through VPN technologies, to various MST-, EEM-, and GRE-based deployment models and beyond. Although this book is intended to be read cover-to-cover, it is designed to be flexible and allow you to easily move between chapters to develop the solution most compatible with your requirements.

 

 





Describes a variety of deployment models to effectively transport Layer 2 information, allowing your virtualization solution to operate effectively Explains benefits and trade-offs of various solutions for you to choose the solution most compatible with your network requirements to ensure business resilience Provides detailed design guidance and configuration examples that follow Cisco best practice recommendations tested within the CVD

This book is part of the Networking Technology Series from Cisco Press®, which offers networking professionals valuable information for constructing efficient networks, understanding new technologies, and building successful careers.

 

 
Introduction xv
Data Center Layer 2 Interconnect
1(8)
Overview of High-Availability Clusters
2(2)
Public Network Attachment
3(1)
Private Network Attachment
3(1)
Data Center Interconnect: Legacy Deployment Models
4(1)
Problems Associated with Extended Layer 2 Networks
5(2)
Summary
7(2)
Appraising Virtual Private LAN Service
9(14)
VPN Technology Considerations
9(2)
Virtual Private Networks
10(1)
Virtual Private Networks
10(1)
VPLS Overview
11(3)
Understanding Pseudowires
14(1)
VPLS to Scale STP Domain for Layer 2 Interconnection
15(2)
H-VPLS Considerations
17(1)
EEM
18(1)
MPLS
19(3)
Label Switching Functions
19(1)
MPLS LDP
20(1)
MPLS LDP Targeted Session
20(1)
Limit LDP Label Allocation
21(1)
MPLS LDP-IGP Synchronization
21(1)
MPLS LDP TCP ``Pak Priority''
21(1)
MPLS LDP Session Protection
22(1)
Summary
22(1)
High Availability for Extended layer 2 Networks
23(20)
MTU Evaluation for Intersite Transport
23(2)
Core Routing
25(7)
Mixed MPLS/IP Core
26(1)
Different IGP for IP Core and MPLS
27(1)
Same IGP for IP Core and MPLS
27(1)
Pure MPLS Core
28(2)
Pure IP Core
30(2)
Convergence Optimization
32(10)
Key Convergence Elements
33(1)
Failure Detection and Tuning
33(1)
IP Event Dampening
34(1)
BFD
35(2)
Link Debounce Timer
37(1)
Carrier-Delay Timer
38(2)
Alternate Route Computation
40(2)
Summary
42(1)
MPLS Traffic Engineering
43(12)
Understanding MPLS-TE
43(3)
Fast Reroute
44(1)
Load Repartition over the Core
45(1)
Load Repartition over a Parallel-Links Bundle
45(1)
Implementing MPLS-TE for Traffic Repartition over Parallel Links
46(7)
Enable TE
47(1)
Create MPLS-TE Tunnels and Map Each VFI to a Tunnel LSP
48(1)
Explicit-Path Option
48(2)
Adding FRR to Explicit Option
50(2)
Affinity Option
52(1)
Adding FRR to Affinity Option
52(1)
Summary
53(2)
Data Center Interconnect: Architecture Alternatives
55(6)
Ensuring a Loop-Free Global Topology: Two Primary Solution Models
55(2)
N-PE Using MST for Access to VPLS
56(1)
N-PE Using ICCP Emulation for Access to VPLS
56(1)
Data Center Interconnect Design Alternatives: Summary and Comparison
57(4)
Case Studies for Data Center Interconnect
61(8)
Large Government Organization
61(4)
Challenges
61(1)
Solution
62(3)
Large Outsourcer for Server Migration and Clustering
65(3)
Challenges
65(1)
Solution
65(3)
Summary
68(1)
Data Center Multilayer Infrastructure Design
69(8)
Network Staging for Design Validation
71(6)
Hardware and Software
72(1)
Convergence Tests
73(1)
Traffic Flow
73(1)
Traffic Rate
73(1)
Traffic Profile
74(2)
Summary
76(1)
MST-Based Deployment Models
77(62)
MST in N-PE: MST Option la
77(29)
Implementing MST in N-PE: MST Option la Design
80(20)
Convergence Tests
100(3)
Cluster Server Tests
103(3)
VPLS with N-PE Redundancy Using RPVST with Isolated MST in N-PE: MST Option 1b
106(33)
EEM Scripting to Complement Isolated MST Solution
109(1)
Implementing RPVST in a Data Center with Isolated MST in N-PE (MST Option 1b) Design
110(20)
Convergence Tests
130(4)
Cluster Server Tests
134(4)
Summary
138(1)
EEM-Based Deployment Models
139(138)
N-PE Redundancy Using the Semaphore Protocol: Overview
139(3)
Semaphore Definition
141(1)
Semaphore Theory Application
142(1)
N-PE Redundancy Using Semaphore Protocol: Details
142(8)
VPLS PWs in Normal Mode
142(3)
Primary N-PE Failure
145(1)
Primary N-PE Recovers After the Failure
145(1)
Implementing a Semaphore
146(1)
EEM/Semaphore Scripts
147(1)
Naming Conventions
148(1)
Loopback Definitions
148(1)
Node Definitions
149(1)
VPLS with N-PE Redundancy Using EEM Semaphore: EEM Option 2
150(26)
Control Plane
151(1)
Data Plane
151(1)
Theory of Operation
151(1)
Normal Mode
151(1)
Failure Conditions
152(1)
Primary N-PE Node Failure
153(1)
Primary N-PE Node Recovers After the Failure
154(1)
N-PE Routers: Hardware and Software
154(1)
Implementing VPLS with N-PE Redundancy Using EEM Semaphore Design
154(14)
Convergence Tests
168(4)
Cluster Server Tests
172(4)
H-VPLS with N-PE Redundancy Using EEM Semaphore: EEM Option 3
176(25)
Control Plane
179(1)
Data Plane
179(1)
Theory of Operation
179(1)
Normal Mode
179(1)
Primary N-PE Node or Q-Link Failure
180(1)
Primary N-PE Node or Q-Link Recovers After the Failure
181(1)
N-PE Routers: Hardware and Software
182(1)
Implementing H-VPLS with N-PE Redundancy Using EEM Semaphore Design
182(13)
Convergence Tests
195(4)
Server Cluster Tests
199(2)
Multidomain H-VPLS with N-PE Redundancy: EEM Option 4a
201(26)
Control Plane
203(1)
Data Plane
203(1)
Theory of Operation
204(1)
Normal Mode
204(1)
Primary N-PE Node or Q-Link Failure
204(1)
Primary N-PE Node or Q-Link Recovery After the Failure
205(2)
N-PE Routers: Hardware and Software
207(1)
Implementing Multidomain H-VPLS with N-PE Redundancy Using EEM Semaphore Design
207(10)
Convergence Tests
217(4)
Server Cluster Tests
221(6)
Multidomain H-VPLS with Dedicated U-PE: EEM Option 4b
227(1)
Multidomain H-VPLS with Multichassis EtherChannel: EEM Option 5a
227(3)
Solution Positioning
230(1)
Multidomain H-VPLS with MEC and VLAN Load Balancing: EEM Option 5b
230(32)
Control Plane
233(1)
Data Plane
233(1)
Theory of Operation
233(1)
Normal Mode
233(1)
Primary N-PE Node Failure
234(1)
Primary N-P Node Recovers After the Failure
235(1)
N-PE Routers: Hardware and Software
236(1)
Implementing EEM Option 5b
237(15)
Convergence Tests
252(7)
Server Tests
259(3)
Multidomain H-VPLS with MEC and VLAN Load Balancing: PWs on Active and Standby VPLS Nodes in Up/Up State: EEM Option 5c
262(13)
N-PE Routers: Hardware and Software
264(1)
Configuration Summary
265(5)
Convergence Tests
270(5)
Summary
275(2)
GRE-Based Deployment Model
277(26)
Key Configuration Steps for VPLSoGRE-Based Solutions
279(3)
VPLSoGRE with N-PE Redundancy Using EEM Semaphore
282(9)
Convergence Tests
284(2)
Cluster Server Tests
286(5)
VPLSoGRE: Multidomain with H-VPLS Solution
291(11)
Convergence and Cluster Server Tests
296(2)
Cluster Server Tests
298(4)
Summary
302(1)
Additional Data Center Interconnect Design Considerations
303(18)
Multicast Deployment in a Layer 2 Environment
303(3)
Multicast at Layer 2
304(1)
Tuning the IGMP Query Interval
304(2)
Spanning Tree, HSRP, and Service Module Design
306(1)
Routing Design
306(1)
QinQ MAC Overlapping
307(3)
Storm Control
310(5)
L2 Control-Plane Packet Storm Toward N-PE
311(1)
L2 Broadcast and Multicast Packet Storm
312(1)
L2 Known Unicast Packet Storm
313(1)
L2 Unknown Unicast Packet Storm
314(1)
QoS Considerations
315(3)
Stateful Switchover Considerations
318(1)
IGP (OSPF) Cost
318(1)
Router ID Selection
319(1)
Summary
319(2)
VPLS PE Redundancy Using Inter-Chassis Communication Protocol
321(8)
Introducing ICCP
322(2)
Interaction with AC Redundancy Mechanisms
324(1)
Interaction with PW Redundancy Mechanisms
325(1)
Configuring VPLS PE Redundancy Using ICCP
326(1)
Summary
327(2)
Evolution of Data Center Interconnect
329(6)
A Larger Problem to Solve
329(1)
Networking Technology: Research Directions
330(3)
Improving Legacy L2 Bridging
330(1)
New Concepts in L2 Bridging
331(1)
L2 Service over L3 Transport: MPLS or IP? Battle or Coexistence?
332(1)
Summary
333(2)
Glossary 335(4)
Index 339
Nash Darukhanawalla, CCIE No. 10332, has more than 25 years of internetworking experience. He has held a wide variety of consulting, technical, product development, customer support, and management positions. Nashs technical expertise includes extensive experience in designing and supporting complex networks with a strong background in configuring, troubleshooting, and analyzing network systems. Nash has been with Cisco for more than 10 years and is currently an engineering manager

in the Enhanced Customer Aligned Testing Services (ECATS) group in the Advanced Services organization. Nash graduated with a bachelor of science degree in physics and computer science from the University of Bombay, India, and is a CCIE in routing and switching. He has written several white papers on various technologies and recently wrote the System Assurance Guide on High Availability Campus Network Design Routed Access Using EIGRP or OSPF.

 

Patrice Bellagamba has been in the networking industry for more than 25 years and has spent more than 10 years in engineering development. He is a consulting engineer and a recognized expert in IP and MPLS technologies. He is one of the influencers in the development of MPLS and has led MPLS techtorials at Networkers in Europe since its

inception. He is also the inventor of the Embedded Event Manager (EEM) semaphore concept and is the designer of the VPLS-based solutions that this book describes. Patrice holds an engineering degree from the E“cole Supérieure dElectricité, one of Frances prestigious Grandes E“coles and a top institution in the field of electrical and computer engineering. He has written several Cisco white papers on the use of MPLS technology.