Introduction |
|
xv | |
|
Data Center Layer 2 Interconnect |
|
|
1 | (8) |
|
Overview of High-Availability Clusters |
|
|
2 | (2) |
|
Public Network Attachment |
|
|
3 | (1) |
|
Private Network Attachment |
|
|
3 | (1) |
|
Data Center Interconnect: Legacy Deployment Models |
|
|
4 | (1) |
|
Problems Associated with Extended Layer 2 Networks |
|
|
5 | (2) |
|
|
7 | (2) |
|
Appraising Virtual Private LAN Service |
|
|
9 | (14) |
|
VPN Technology Considerations |
|
|
9 | (2) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (3) |
|
Understanding Pseudowires |
|
|
14 | (1) |
|
VPLS to Scale STP Domain for Layer 2 Interconnection |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (3) |
|
Label Switching Functions |
|
|
19 | (1) |
|
|
20 | (1) |
|
MPLS LDP Targeted Session |
|
|
20 | (1) |
|
Limit LDP Label Allocation |
|
|
21 | (1) |
|
MPLS LDP-IGP Synchronization |
|
|
21 | (1) |
|
MPLS LDP TCP ``Pak Priority'' |
|
|
21 | (1) |
|
MPLS LDP Session Protection |
|
|
22 | (1) |
|
|
22 | (1) |
|
High Availability for Extended layer 2 Networks |
|
|
23 | (20) |
|
MTU Evaluation for Intersite Transport |
|
|
23 | (2) |
|
|
25 | (7) |
|
|
26 | (1) |
|
Different IGP for IP Core and MPLS |
|
|
27 | (1) |
|
Same IGP for IP Core and MPLS |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (2) |
|
|
32 | (10) |
|
|
33 | (1) |
|
Failure Detection and Tuning |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (2) |
|
Alternate Route Computation |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (12) |
|
|
43 | (3) |
|
|
44 | (1) |
|
Load Repartition over the Core |
|
|
45 | (1) |
|
Load Repartition over a Parallel-Links Bundle |
|
|
45 | (1) |
|
Implementing MPLS-TE for Traffic Repartition over Parallel Links |
|
|
46 | (7) |
|
|
47 | (1) |
|
Create MPLS-TE Tunnels and Map Each VFI to a Tunnel LSP |
|
|
48 | (1) |
|
|
48 | (2) |
|
Adding FRR to Explicit Option |
|
|
50 | (2) |
|
|
52 | (1) |
|
Adding FRR to Affinity Option |
|
|
52 | (1) |
|
|
53 | (2) |
|
Data Center Interconnect: Architecture Alternatives |
|
|
55 | (6) |
|
Ensuring a Loop-Free Global Topology: Two Primary Solution Models |
|
|
55 | (2) |
|
N-PE Using MST for Access to VPLS |
|
|
56 | (1) |
|
N-PE Using ICCP Emulation for Access to VPLS |
|
|
56 | (1) |
|
Data Center Interconnect Design Alternatives: Summary and Comparison |
|
|
57 | (4) |
|
Case Studies for Data Center Interconnect |
|
|
61 | (8) |
|
Large Government Organization |
|
|
61 | (4) |
|
|
61 | (1) |
|
|
62 | (3) |
|
Large Outsourcer for Server Migration and Clustering |
|
|
65 | (3) |
|
|
65 | (1) |
|
|
65 | (3) |
|
|
68 | (1) |
|
Data Center Multilayer Infrastructure Design |
|
|
69 | (8) |
|
Network Staging for Design Validation |
|
|
71 | (6) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
74 | (2) |
|
|
76 | (1) |
|
MST-Based Deployment Models |
|
|
77 | (62) |
|
MST in N-PE: MST Option la |
|
|
77 | (29) |
|
Implementing MST in N-PE: MST Option la Design |
|
|
80 | (20) |
|
|
100 | (3) |
|
|
103 | (3) |
|
VPLS with N-PE Redundancy Using RPVST with Isolated MST in N-PE: MST Option 1b |
|
|
106 | (33) |
|
EEM Scripting to Complement Isolated MST Solution |
|
|
109 | (1) |
|
Implementing RPVST in a Data Center with Isolated MST in N-PE (MST Option 1b) Design |
|
|
110 | (20) |
|
|
130 | (4) |
|
|
134 | (4) |
|
|
138 | (1) |
|
EEM-Based Deployment Models |
|
|
139 | (138) |
|
N-PE Redundancy Using the Semaphore Protocol: Overview |
|
|
139 | (3) |
|
|
141 | (1) |
|
Semaphore Theory Application |
|
|
142 | (1) |
|
N-PE Redundancy Using Semaphore Protocol: Details |
|
|
142 | (8) |
|
|
142 | (3) |
|
|
145 | (1) |
|
Primary N-PE Recovers After the Failure |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
VPLS with N-PE Redundancy Using EEM Semaphore: EEM Option 2 |
|
|
150 | (26) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
Primary N-PE Node Failure |
|
|
153 | (1) |
|
Primary N-PE Node Recovers After the Failure |
|
|
154 | (1) |
|
N-PE Routers: Hardware and Software |
|
|
154 | (1) |
|
Implementing VPLS with N-PE Redundancy Using EEM Semaphore Design |
|
|
154 | (14) |
|
|
168 | (4) |
|
|
172 | (4) |
|
H-VPLS with N-PE Redundancy Using EEM Semaphore: EEM Option 3 |
|
|
176 | (25) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
Primary N-PE Node or Q-Link Failure |
|
|
180 | (1) |
|
Primary N-PE Node or Q-Link Recovers After the Failure |
|
|
181 | (1) |
|
N-PE Routers: Hardware and Software |
|
|
182 | (1) |
|
Implementing H-VPLS with N-PE Redundancy Using EEM Semaphore Design |
|
|
182 | (13) |
|
|
195 | (4) |
|
|
199 | (2) |
|
Multidomain H-VPLS with N-PE Redundancy: EEM Option 4a |
|
|
201 | (26) |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
204 | (1) |
|
Primary N-PE Node or Q-Link Failure |
|
|
204 | (1) |
|
Primary N-PE Node or Q-Link Recovery After the Failure |
|
|
205 | (2) |
|
N-PE Routers: Hardware and Software |
|
|
207 | (1) |
|
Implementing Multidomain H-VPLS with N-PE Redundancy Using EEM Semaphore Design |
|
|
207 | (10) |
|
|
217 | (4) |
|
|
221 | (6) |
|
Multidomain H-VPLS with Dedicated U-PE: EEM Option 4b |
|
|
227 | (1) |
|
Multidomain H-VPLS with Multichassis EtherChannel: EEM Option 5a |
|
|
227 | (3) |
|
|
230 | (1) |
|
Multidomain H-VPLS with MEC and VLAN Load Balancing: EEM Option 5b |
|
|
230 | (32) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
233 | (1) |
|
Primary N-PE Node Failure |
|
|
234 | (1) |
|
Primary N-P Node Recovers After the Failure |
|
|
235 | (1) |
|
N-PE Routers: Hardware and Software |
|
|
236 | (1) |
|
Implementing EEM Option 5b |
|
|
237 | (15) |
|
|
252 | (7) |
|
|
259 | (3) |
|
Multidomain H-VPLS with MEC and VLAN Load Balancing: PWs on Active and Standby VPLS Nodes in Up/Up State: EEM Option 5c |
|
|
262 | (13) |
|
N-PE Routers: Hardware and Software |
|
|
264 | (1) |
|
|
265 | (5) |
|
|
270 | (5) |
|
|
275 | (2) |
|
GRE-Based Deployment Model |
|
|
277 | (26) |
|
Key Configuration Steps for VPLSoGRE-Based Solutions |
|
|
279 | (3) |
|
VPLSoGRE with N-PE Redundancy Using EEM Semaphore |
|
|
282 | (9) |
|
|
284 | (2) |
|
|
286 | (5) |
|
VPLSoGRE: Multidomain with H-VPLS Solution |
|
|
291 | (11) |
|
Convergence and Cluster Server Tests |
|
|
296 | (2) |
|
|
298 | (4) |
|
|
302 | (1) |
|
Additional Data Center Interconnect Design Considerations |
|
|
303 | (18) |
|
Multicast Deployment in a Layer 2 Environment |
|
|
303 | (3) |
|
|
304 | (1) |
|
Tuning the IGMP Query Interval |
|
|
304 | (2) |
|
Spanning Tree, HSRP, and Service Module Design |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
307 | (3) |
|
|
310 | (5) |
|
L2 Control-Plane Packet Storm Toward N-PE |
|
|
311 | (1) |
|
L2 Broadcast and Multicast Packet Storm |
|
|
312 | (1) |
|
L2 Known Unicast Packet Storm |
|
|
313 | (1) |
|
L2 Unknown Unicast Packet Storm |
|
|
314 | (1) |
|
|
315 | (3) |
|
Stateful Switchover Considerations |
|
|
318 | (1) |
|
|
318 | (1) |
|
|
319 | (1) |
|
|
319 | (2) |
|
VPLS PE Redundancy Using Inter-Chassis Communication Protocol |
|
|
321 | (8) |
|
|
322 | (2) |
|
Interaction with AC Redundancy Mechanisms |
|
|
324 | (1) |
|
Interaction with PW Redundancy Mechanisms |
|
|
325 | (1) |
|
Configuring VPLS PE Redundancy Using ICCP |
|
|
326 | (1) |
|
|
327 | (2) |
|
Evolution of Data Center Interconnect |
|
|
329 | (6) |
|
A Larger Problem to Solve |
|
|
329 | (1) |
|
Networking Technology: Research Directions |
|
|
330 | (3) |
|
Improving Legacy L2 Bridging |
|
|
330 | (1) |
|
New Concepts in L2 Bridging |
|
|
331 | (1) |
|
L2 Service over L3 Transport: MPLS or IP? Battle or Coexistence? |
|
|
332 | (1) |
|
|
333 | (2) |
Glossary |
|
335 | (4) |
Index |
|
339 | |