Atjaunināt sīkdatņu piekrišanu

E-grāmata: Internal Reflection and ATR Spectroscopy

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 102,25 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An optical spectroscopy consultant based in Milan, Milosevic explains the relationship between electromagnetic theory and spectroscopy, focusing on attenuated total reflection (ATR) spectroscopy. Electromagnetic theory is generally taught in physics textbooks that give only cursory attention to transmission and reflection, he says, and spectroscopy is used by analytical chemists who give little thought to the underlying physics. His account pivots on the evanescent wave, explaining it as a physical phenomenon and as the basis for ATR spectroscopy. Among the topics are the propagation of electromagnetic energy, effective thickness, multiple interfaces, ATR spectroscopy of small samples, energy flow at a totally internally reflecting interface, and orientation studies and ATR spectroscopy. Readers should have a basic understanding of electromagnetic theory. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

Attenuated Total Reflection (ATR) Spectroscopy is now the most frequently used sampling technique for infrared spectroscopy. This book fully explains the theory and practice of this method.
  • Offers introduction and history of ATR before discussing theoretical aspects
  • Includes informative illustrations and theoretical calculations
  • Discusses many advanced aspects of ATR, such as depth profiling or orientation studies, and particular features of reflectance
Preface xiii
1 Introduction to Spectroscopy
1(19)
1.1 History
1(5)
1.2 Definition of Transmittance and Reflectance
6(4)
1.3 The Spectroscopic Experiment and the Spectrometer
10(3)
1.4 Propagation of Light through a Medium
13(2)
1.5 Transmittance and Absorbance
15(1)
1.6 S/N in a Spectroscopic Measurement
16(4)
2 Harmonic Oscillator Model for Optical Constants
20(11)
2.1 Harmonic Oscillator Model for Polarizability
20(5)
2.2 Clausius-Mossotti Equation
25(1)
2.3 Refractive Index
26(3)
2.4 Absorption Index and Concentration
29(2)
3 Propagation of Electromagnetic Energy
31(8)
3.1 Poynting Vector and Flow of Electromagnetic Energy
31(3)
3.2 Linear Momentum of Light
34(1)
3.3 Light Absorption in Absorbing Media
35(1)
3.4 Lambert Law and Molecular Cross Section
36(3)
4 Fresnel Equations
39(16)
4.1 Electromagnetic Fields at the Interface
39(2)
4.2 Snell's Law
41(1)
4.3 Boundary Conditions at the Interface
42(1)
4.4 Fresnel Formulae
43(1)
4.5 Reflectance and Transmitance of Interface
44(2)
4.6 Snell's Pairs
46(1)
4.7 Normal Incidence
47(1)
4.8 Brewster's Angle
47(1)
4.9 The Case of the 45 Angle of Incidence
48(1)
4.10 Total Internal Reflection
49(6)
5 Evanescent Wave
55(6)
5.1 Exponential Decay and Penetration Depth
55(3)
5.2 Energy Flow at a Totally Internally Reflecting Interface
58(1)
5.3 The Evanescent Wave in Absorbing Materials
59(2)
6 Electric Fields at a Totally Internally Reflecting Interface
61(6)
6.1 Ex, Ey, and Ez for s-Polarized Incident Light
61(1)
6.2 Ex, Ey, and Ez for p-Polarized Incident Light
62(5)
7 Anatomy of ATR Absorption
67(12)
7.1 Attenuated Total Reflection (ATR) Reflectance for s- and p-Polarized Beam
67(2)
7.2 Absorbance Transform of ATR Spectra
69(1)
7.3 Weak Absorption Approximation
70(3)
7.4 Supercritical Reflectance and Absorption of Evanescent Wave
73(3)
7.5 The Leaky Interface Model
76(3)
8 Effective Thickness
79(6)
8.1 Definition and Expressions for Effective Thickness
79(1)
8.2 Effective Thickness and Penetration Depth
80(2)
8.3 Effective Thickness and ATR Spectroscopy
82(2)
8.4 Effective Thickness for Strong Absorptions
84(1)
9 Internal Reflectance near Critical Angle
85(7)
9.1 Transition from Subcritical to Supercritical Reflection
85(2)
9.2 Effective Thickness and Refractive Index of Sample
87(1)
9.3 Critical Angle and Refractive Index of Sample
88(4)
10 Depth Profiling
92(5)
10.1 Energy Absorption at Different Depths
92(1)
10.2 Thin Absorbing Layer on a Nonabsorbing Substrate
93(1)
10.3 Thin Nonabsorbing Film on an Absorbing Substrate
94(1)
10.4 Thin Nonabsorbing Film on a Thin Absorbing Film on a Nonabsorbing Substrate
94(3)
11 Multiple Interfaces
97(24)
11.1 Reflectance and Transmittance of a Two-Interface System
97(3)
11.2 Very Thin Films
100(1)
11.3 Interference Fringes
101(1)
11.4 Normal Incidence
102(2)
11.5 Interference Fringes and Transmission Spectroscopy
104(4)
11.6 Thin Films and ATR
108(1)
11.7 Internal Reflection: Subcritical, Supercritical, and in between
109(1)
11.8 Unusual Fringes
110(3)
11.9 Penetration Depth Revisited
113(3)
11.10 Reflectance and Transmittance of a Multiple Interface System
116(5)
12 Metal Optics
121(15)
12.1 Electromagnetic Fields in Metals
121(5)
12.2 Plasma
126(1)
12.3 Reflectance of Metal Surfaces
127(3)
12.4 Thin Metal Films on Transparent Substrates
130(2)
12.5 Curious Reflectance of Extremely Thin Metal Films
132(2)
12.6 ATR Spectroscopy through Thin Metal Films
134(2)
13 Grazing Angle ATR (GAATR) Spectroscopy
136(11)
13.1 Attenuated Total Reflection (ATR) Spectroscopy of Thin Films on Silicon Substrates
136(1)
13.2 Enhancement for s- and p-Polarized Light
137(2)
13.3 Enhancement and Film Thickness
139(2)
13.4 Electric Fields in a Very Thin Film on a Si Substrate
141(2)
13.5 Source of Enhancement
143(2)
13.6 GAATR Spectroscopy
145(2)
14 Super Grazing Angle Reflection Spectroscopy (SuGARS)
147(4)
14.1 Reflectance of Thin Films on Metal Substrates
147(1)
14.2 Problem of Reference
148(2)
14.3 Sensitivity Enhancement
150(1)
15 ATR Experiment
151(17)
15.1 Multiple Reflection Attenuated Total Reflection (ATR)
151(4)
15.2 Facet Reflections
155(1)
15.3 Beam Spread and the Angle of Incidence
156(2)
15.4 Effect of Facet Shape
158(2)
15.5 Beam Spread and the Number of Reflections in Multiple Reflection ATR
160(2)
15.6 Effect of Beam Alignment on Multiple Reflection ATR
162(4)
15.7 Change in the Refractive Index of the Sample due to Concentration Change
166(2)
16 ATR Spectroscopy of Small Samples
168(4)
16.1 Benefits of Attenuated Total Reflection (ATR) for Microsampling
168(2)
16.2 Contact Problem for Solid Samples
170(2)
17 Surface Plasma Waves
172(8)
17.1 Excitation of Surface Plasma Waves
172(1)
17.2 Effect of Metal Film Thickness on Reflectance
173(1)
17.3 Effect of the Refractive Index of Metal on Reflectance
174(1)
17.4 Effect of the Absorption Index of Metal on Reflectance
174(1)
17.5 Use of Plasmons for Detecting Minute Changes of the Refractive Index of Materials
175(3)
17.6 Use of Plasmons for Detecting Minute Changes of the Absorption Index of Materials
178(2)
18 Extraction of Optical Constants of Materials from Experiments
180(12)
18.1 Extraction of Optical Constants from Multiple Experiments
180(4)
18.2 Kramers-Kronig Relations
184(3)
18.3 Kramers-Kronig Equations for Normal Incidence Reflectance
187(5)
19 ATR Spectroscopy of Powders
192(17)
19.1 Propagation of Light through Inhomogeneous Media
192(1)
19.2 Spectroscopic Analysis of Powdered Samples
193(2)
19.3 Particle Size and Absorbance of Powders
195(3)
19.4 Propagation of Evanescent Wave in Powdered Media
198(11)
20 Energy Flow at a Totally Internally Reflecting Interface
209(5)
20.1 Energy Conservation at a Totally Reflecting Interface
209(3)
20.2 Speed of Propagation and the Formation of an Evanescent Wave
212(2)
21 Orientation Studies and ATR Spectroscopy
214(6)
21.1 Oriented Fraction and Dichroic Ratio
214(3)
21.2 Orientation and Field Strengths in Attenuated Total Reflection (ATR)
217(3)
22 Applications of ATR Spectroscopy
220(4)
22.1 Solid Samples
220(1)
22.2 Liquid Samples
220(1)
22.3 Powders
221(1)
22.4 Surface-Modified Solid Samples
221(1)
22.5 High Sample Throughput ATR Analysis
221(1)
22.6 Process and Reaction Monitoring
222(2)
Appendix A ATR Correction 224(3)
Appendix B Quantification in ATR Spectroscopy 227(10)
Index 237
MILAN MILOSEVIC works as a consultant in the field of optical spectroscopy for MeV Technologies, LLC. Milan has spent his entire career in the field of FTIR spectroscopy, developing spectroscopic equipment and building our understanding of the physical basis of spectroscopy. He has pioneered several devices for what have become standard spectroscopic techniques, including micro ATR, variable angle ATR, and grazing angle ATR spectroscopy. Holding over fifteen US patents, Milan has authored or coauthored over thirty peer-reviewed papers on various aspects of spectroscopy.