Preface |
|
x | |
|
Symbols for crystallographic items used in this book |
|
xi | |
|
Part I Introduction To Crystallographic Symmetry |
|
|
1 | (106) |
|
1.1 A general introduction to groups (Bernd Souvignier) |
|
|
2 | (8) |
|
|
2 | (1) |
|
1.1.2 Basic properties of groups |
|
|
2 | (2) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.1.5 Normal subgroups, factor groups |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.1.7 Conjugation, normalizers |
|
|
8 | (2) |
|
1.2 Crystallographic symmetry (Hans Wondratschek and Mois I. Aroyo) |
|
|
10 | (7) |
|
1.2.1 Crystallographic symmetry operations |
|
|
10 | (1) |
|
1.2.2 Matrix description of symmetry operations |
|
|
11 | (1) |
|
1.2.2.1 Matrix-column presentation of isometries |
|
|
11 | (1) |
|
1.2.2.2 Combination of mappings and inverse mappings |
|
|
12 | (1) |
|
1.2.2.3 The geometric meaning of (W, w) |
|
|
12 | (2) |
|
|
14 | (3) |
|
1.3 A general introduction to space groups (Bernd Souvignier) |
|
|
17 | (8) |
|
|
17 | (1) |
|
|
17 | (1) |
|
1.3.2.1 Basic properties of lattices |
|
|
17 | (1) |
|
1.3.2.2 Metric properties |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.3.2.4 Primitive and centred lattices |
|
|
19 | (2) |
|
1.3.2.5 Reciprocal lattice |
|
|
21 | (1) |
|
1.3.3 The structure of space groups |
|
|
22 | (1) |
|
1.3.3.1 Point groups of space groups |
|
|
22 | (1) |
|
1.3.3.2 Coset decomposition with respect to the translation subgroup |
|
|
23 | (1) |
|
1.3.3.3 Symmorphic and non-symmorphic space groups |
|
|
24 | (1) |
|
13.4 Classification of space groups |
|
|
25 | (7) |
|
1.3.4.1 Space-group types |
|
|
26 | (1) |
|
1.3.4.2 Geometric crystal classes |
|
|
27 | (1) |
|
1.3.4.3 Bravais types of lattices and Bravais classes |
|
|
28 | (1) |
|
1.3.4.4 Other classifications of space groups |
|
|
29 | (3) |
|
1.4 Space groups and their descriptions (Bernd Souvignier, Hans Wondratschek, Mois I. Aroyo, Gervais Chapuis and A. M. Glazer) |
|
|
32 | (21) |
|
1.4.1 Symbols of space groups (Hans Wondratschek) |
|
|
32 | (1) |
|
|
32 | (1) |
|
1.4.1.2 Space-group numbers |
|
|
32 | (1) |
|
1.4.1.3 Schoenflies symbols |
|
|
32 | (1) |
|
1.4.1.4 Hermann-Mauguin symbols of the space groups |
|
|
33 | (3) |
|
1.4.1.5 Hermann-Mauguin symbols of the plane groups |
|
|
36 | (1) |
|
1.4.2 Descriptions of space-group symmetry operations (Mois I. Aroyo, Gervais Chapuis, Bernd Souvignier and A. M. Glazer) |
|
|
36 | (1) |
|
1.4.2.1 Symbols for symmetry operations |
|
|
36 | (1) |
|
1.4.2.2 Seitz symbols of symmetry operations |
|
|
37 | (2) |
|
1.4.2.3 Symmetry operations and the general position |
|
|
39 | (1) |
|
1.4.2.4 Additional symmetry operations and symmetry elements |
|
|
40 | (2) |
|
1.4.2.5 Space-group diagrams |
|
|
42 | (1) |
|
1.4.3 Generation of space groups (Hans Wondratschek) |
|
|
42 | (1) |
|
1.4.3.1 Selected order for non-translational generators |
|
|
43 | (3) |
|
1.4.4 General and special Wyckoff positions (Bernd Souvignier) |
|
|
46 | (1) |
|
1.4.4.1 Crystallographic orbits |
|
|
46 | (1) |
|
1.4.4.2 Wyckoff positions |
|
|
47 | (3) |
|
1.4.5 Sections and projections of space groups (Bernd Souvignier) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (3) |
|
|
53 | (4) |
|
1.5 Transformations of coordinate systems (Hans Wondratschek, Mois I. Aroyo, Bernd Souvignier and Gervais Chapuis) |
|
|
57 | (6) |
|
1.5.1 Origin shift and change of the basis (Hans Wondratschek and Mois I. Aroyo) |
|
|
57 | (1) |
|
|
57 | (1) |
|
13.1.2 Change of the basis |
|
|
58 | (5) |
|
1.5.13 General change of coordinate system |
|
|
63 | (1) |
|
13.2 Transformations of crystallographic quantities under coordinate transformations (Hans Wondratschek and Mois I. Aroyo) |
|
|
63 | (3) |
|
13.2.1 Covariant and contravariant quantities |
|
|
63 | (1) |
|
13.2.2 Metric tensors of direct and reciprocal lattices |
|
|
64 | (1) |
|
1.5.23 Transformation of matrix-column pairs of symmetry operations |
|
|
64 | (1) |
|
1.5.2.4 Example: paraelectric-to-ferroelectric phase transition of GeTe |
|
|
64 | (2) |
|
1.53 Transformations between different space-group descriptions (Gervais Chapuis, Hans Wondratschek and Mois I. Aroyo) |
|
|
66 | (1) |
|
1.53.1 Space groups with more than one description in IT A |
|
|
66 | (1) |
|
|
67 | (2) |
|
13.4 Synoptic tables of plane and space groups (Bernd Souvignier, Gervais Chapuis and Hans Wondratschek) |
|
|
69 | (6) |
|
1.6 Introduction to the theory and practice of space-group determination (Uri Shmueli, Howard D. Flack and John C. H. Spence) |
|
|
75 | (14) |
|
|
75 | (1) |
|
1.6.2 Symmetry determination from single-crystal studies (Uri Shmueli and Howard D. Flack) |
|
|
75 | (1) |
|
1.6.2.1 Symmetry information from the diffraction pattern |
|
|
75 | (1) |
|
1.6.2.2 Structure-factor statistics and crystal symmetry |
|
|
76 | (2) |
|
1.6.2.3 Symmetry information from the structure solution |
|
|
78 | (1) |
|
1.6.2.4 Restrictions on space groups |
|
|
78 | (1) |
|
1.6.23 Pitfalls in space-group determination |
|
|
79 | (1) |
|
1.6.3 Theoretical background of reflection conditions (Uri Shmueli) |
|
|
79 | (1) |
|
1.6.3.1 Example: a determination of reflection conditions |
|
|
80 | (1) |
|
1.6.4 Reflection conditions and possible space groups (Howard D. Flack and Uri Shmueli) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
1.6.5 Space-group determination in macromolecular crystallography (Howard D. Flack) |
|
|
83 | (1) |
|
1.6.6 Space groups for nanocrystals by electron microscopy (John C. H. Spence) |
|
|
83 | (1) |
|
1.6.7 Examples (Howard D. Flack) |
|
|
84 | (1) |
|
1.6.7.1 Example (1), 4-chlorophenol, C6H5OCl |
|
|
84 | (1) |
|
1.6.7.2 Example (2), [ BDTA]2[ CuCl4] |
|
|
85 | (1) |
|
1.6.7.3 Example (3), flol9, C62H46N14 |
|
|
86 | (1) |
|
1.6.7.4 Example (4), CSD refcode FOYTAO01, C12H20O6 |
|
|
86 | (3) |
|
1.7 Applications of crystallographic symmetry: space-group symmetry relations, subperiodic groups and magnetic symmetry (Hans Wondratschek, Ulrich Muller, Daniel B. Litvin, Vojtech Kopsky and Carolyn Pratt Brock) |
|
|
89 | (18) |
|
1.7.1 Subgroups and supergroups of space groups (Hans Wondratschek) |
|
|
89 | (1) |
|
1.7.1.1 Translationengleiche (or (-) subgroups of space groups |
|
|
90 | (1) |
|
1.7.1.2 Klassengleiche (or k-) subgroups of space groups |
|
|
91 | (1) |
|
1.7.1.3 Isomorphic subgroups of space groups |
|
|
91 | (1) |
|
|
91 | (1) |
|
1.7.2 Relations between Wyckoff positions for group-subgroup-related space groups (Ulrich Moller) |
|
|
92 | (1) |
|
1.7.2.1 Symmetry relations between crystal structures |
|
|
92 | (1) |
|
1.7.2.2 Substitution derivatives |
|
|
92 | (1) |
|
1.7.2.3 Phase transitions |
|
|
92 | (1) |
|
1.7.2.4 Domain structures |
|
|
93 | (1) |
|
1.7.2.5 Presentation of the relations between the Wyckoff positions among group-subgroup-related space groups |
|
|
93 | (1) |
|
|
94 | (1) |
|
1.7.3.1 Relationships between space groups and subperiodic groups (Daniel B. Litvin and Vojtech Kopsky) |
|
|
94 | (2) |
|
1.7.3.2 Use of subperiodic groups to describe structural units (Carolyn Pratt Brock) |
|
|
96 | (2) |
|
1.7.3.3 Applications of rod groups (Ulrich Muller) |
|
|
98 | (2) |
|
1.7.4 Magnetic subperiodic groups and magnetic space groups (Daniel B. Litvin) |
|
|
100 | (1) |
|
|
100 | (1) |
|
1.7.4.2 Survey of magnetic subperiodic groups and magnetic space groups |
|
|
101 | (6) |
|
Part 2 Crystallographic Symmetry Data |
|
|
107 | (127) |
|
2.1 Guide to and examples of the space-group tables in IT A (Theo Hahn, Aafje Looijenga-Vos, Mois I. Aroyo, Howard D. Flack and Koichi Momma) |
|
|
108 | (104) |
|
2.1.1 Conventional descriptions of plane and space groups (Theo Hahn and Aafje Looijenga-Vos) |
|
|
108 | (1) |
|
2.1.1.1 Classification of space groups |
|
|
108 | (1) |
|
2.1.1.2 Conventional coordinate systems and cells |
|
|
108 | (2) |
|
2.1.2 Symbols of symmetry elements (Theo Hahn and Mois I. Aroyo) |
|
|
110 | (6) |
|
2.1.3 Contents and arrangement of the tables (Theo Hahn, Aafje Looijenga-Vos, Mois I. Aroyo, Howard D. Flack and Koichi Momma) |
|
|
116 | (1) |
|
|
116 | (1) |
|
2.1.3.2 Space groups with more than one description |
|
|
116 | (1) |
|
|
117 | (1) |
|
2.1.3.4 International (Hermann-Mauguin) symbols for plane groups and space groups |
|
|
117 | (1) |
|
2.1.3.5 Patterson symmetry |
|
|
118 | (1) |
|
2.1.3.6 Space-group diagrams |
|
|
119 | (4) |
|
|
123 | (1) |
|
|
123 | (1) |
|
2.1.3.9 Symmetry operations |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
2.1.3.12 Oriented site-symmetry symbols |
|
|
126 | (1) |
|
2.1.3.13 Reflection conditions |
|
|
127 | (3) |
|
2.1.3.14 Symmetry of special projections |
|
|
130 | (1) |
|
2.1.3.15 Crystallographic groups in one dimension |
|
|
131 | (1) |
|
2.1.4 Examples of plane- and space-group tables |
|
|
131 | (81) |
|
2.2 The symmetry-relations tables of IT Al (Hans Wondratschek, Mois t Aroyo and Ulrich Muller) |
|
|
212 | (5) |
|
2.2.1 Guide to the subgroup tables (Hans Wondratschek and Mois I. Aroyo) |
|
|
212 | (1) |
|
2.2.1.1 Contents and arrangement of the subgroup tables |
|
|
212 | (1) |
|
2.2.1.2.1 Maximal translationengleiche subgroups (/-subgroups) |
|
|
212 | (1) |
|
2.2.13 II Maximal klassengleiche subgroups (fc-subgroups) |
|
|
213 | (1) |
|
2.2.14 Minimal supergroups |
|
|
214 | (1) |
|
2.2.2 Examples of the subgroup tables |
|
|
214 | (3) |
|
2.23 Guide to the tables of relations between Wyckoff positions (Ulrich Muller) |
|
|
217 | (2) |
|
2.23.1 Guide to the use of the tables |
|
|
217 | (2) |
|
2.23.2 Cell transformations |
|
|
219 | (1) |
|
|
219 | (5) |
|
2.23.4 Nonconventional settings of orthorhombic space groups |
|
|
219 | (1) |
|
2.2.4 Examples of the tables of relations between Wyckoff positions |
|
|
220 | (4) |
|
2.3 The subperiodic group tables of IT E (Daniel B. Litvin) |
|
|
224 | (1) |
|
23.1 Guide to the subperiodic group tables |
|
|
224 | (1) |
|
23.1.1 Content and arrangement of the tables |
|
|
224 | (1) |
|
2.3.1.2 Diagrams for the symmetry elements and the general position |
|
|
225 | (1) |
|
23.13 Symmetry operations |
|
|
225 | (7) |
|
23.1.4 Subgroups and supergroups |
|
|
225 | (1) |
|
2.3.2 Examples of subperiodic group tables |
|
|
225 | (7) |
|
2.4 The Symmetry Database (Eli Kroumova, Gemma de la Flor and Mois I. Aroyo) |
|
|
232 | (1) |
|
2.4.1 Space-group symmetry data |
|
|
232 | (1) |
|
2.4.2 Symmetry relations between space groups |
|
|
233 | (1) |
|
2.43 3D Crystallographic point groups |
|
|
233 | (1) |
|
|
233 | (1) |
Subject Index |
|
234 | |