Atjaunināt sīkdatņu piekrišanu

International Tables for Crystallography: Crystallographic Symmetry, Teaching Edition 6th edition [Mīkstie vāki]

Edited by (The University of the Basque Country)
  • Formāts: Paperback / softback, 256 pages, height x width x depth: 295x226x18 mm, weight: 839 g
  • Sērija : IUCr Series. International Tables for Crystallography
  • Izdošanas datums: 13-May-2021
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 0470974222
  • ISBN-13: 9780470974223
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 41,70 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 256 pages, height x width x depth: 295x226x18 mm, weight: 839 g
  • Sērija : IUCr Series. International Tables for Crystallography
  • Izdošanas datums: 13-May-2021
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 0470974222
  • ISBN-13: 9780470974223
Citas grāmatas par šo tēmu:

This sixth edition of what was previously known as the Brief Teaching Edition of Volume A provides an introduction to the basic crystallographic data for space groups found in Volume A, for symmetry relations between space groups in Volume A1 and for subperiodic groups in Volume E of International Tables for Crystallography, to magnetic space groups and to the symmetry database that forms part of International Tables Online at https://it.iucr.org. It is designed for graduate students and young researchers who are new to the field of crystallographic symmetry, and includes many illustrative examples to help readers to understand and use these different kinds of information. Selected tables of symmetry data from the full volumes in the series are also included, making this a handy aid for classroom teaching. References are also provided to further specialized sources for those who need to go deeper into the subject and to textbooks for those who need more background information.

Preface x
Mois I. Aroyo
Symbols for crystallographic items used in this book xi
Part I Introduction To Crystallographic Symmetry
1(106)
1.1 A general introduction to groups (Bernd Souvignier)
2(8)
1.1.1 Introduction
2(1)
1.1.2 Basic properties of groups
2(2)
1.1.3 Subgroups
4(1)
1.1.4 Cosets
5(1)
1.1.5 Normal subgroups, factor groups
6(1)
1.1.6 Group actions
7(1)
1.1.7 Conjugation, normalizers
8(2)
1.2 Crystallographic symmetry (Hans Wondratschek and Mois I. Aroyo)
10(7)
1.2.1 Crystallographic symmetry operations
10(1)
1.2.2 Matrix description of symmetry operations
11(1)
1.2.2.1 Matrix-column presentation of isometries
11(1)
1.2.2.2 Combination of mappings and inverse mappings
12(1)
1.2.2.3 The geometric meaning of (W, w)
12(2)
1.2.3 Symmetry elements
14(3)
1.3 A general introduction to space groups (Bernd Souvignier)
17(8)
1.3.1 Introduction
17(1)
1.3.2 Lattices
17(1)
1.3.2.1 Basic properties of lattices
17(1)
1.3.2.2 Metric properties
18(1)
1.3.2.3 Unit cells
19(1)
1.3.2.4 Primitive and centred lattices
19(2)
1.3.2.5 Reciprocal lattice
21(1)
1.3.3 The structure of space groups
22(1)
1.3.3.1 Point groups of space groups
22(1)
1.3.3.2 Coset decomposition with respect to the translation subgroup
23(1)
1.3.3.3 Symmorphic and non-symmorphic space groups
24(1)
13.4 Classification of space groups
25(7)
1.3.4.1 Space-group types
26(1)
1.3.4.2 Geometric crystal classes
27(1)
1.3.4.3 Bravais types of lattices and Bravais classes
28(1)
1.3.4.4 Other classifications of space groups
29(3)
1.4 Space groups and their descriptions (Bernd Souvignier, Hans Wondratschek, Mois I. Aroyo, Gervais Chapuis and A. M. Glazer)
32(21)
1.4.1 Symbols of space groups (Hans Wondratschek)
32(1)
1.4.1.1 Introduction
32(1)
1.4.1.2 Space-group numbers
32(1)
1.4.1.3 Schoenflies symbols
32(1)
1.4.1.4 Hermann-Mauguin symbols of the space groups
33(3)
1.4.1.5 Hermann-Mauguin symbols of the plane groups
36(1)
1.4.2 Descriptions of space-group symmetry operations (Mois I. Aroyo, Gervais Chapuis, Bernd Souvignier and A. M. Glazer)
36(1)
1.4.2.1 Symbols for symmetry operations
36(1)
1.4.2.2 Seitz symbols of symmetry operations
37(2)
1.4.2.3 Symmetry operations and the general position
39(1)
1.4.2.4 Additional symmetry operations and symmetry elements
40(2)
1.4.2.5 Space-group diagrams
42(1)
1.4.3 Generation of space groups (Hans Wondratschek)
42(1)
1.4.3.1 Selected order for non-translational generators
43(3)
1.4.4 General and special Wyckoff positions (Bernd Souvignier)
46(1)
1.4.4.1 Crystallographic orbits
46(1)
1.4.4.2 Wyckoff positions
47(3)
1.4.5 Sections and projections of space groups (Bernd Souvignier)
50(1)
1.4.5.1 Introduction
50(1)
1.43.2 Sections
50(3)
1.433 Projections
53(4)
1.5 Transformations of coordinate systems (Hans Wondratschek, Mois I. Aroyo, Bernd Souvignier and Gervais Chapuis)
57(6)
1.5.1 Origin shift and change of the basis (Hans Wondratschek and Mois I. Aroyo)
57(1)
13.1.1 Origin shift
57(1)
13.1.2 Change of the basis
58(5)
1.5.13 General change of coordinate system
63(1)
13.2 Transformations of crystallographic quantities under coordinate transformations (Hans Wondratschek and Mois I. Aroyo)
63(3)
13.2.1 Covariant and contravariant quantities
63(1)
13.2.2 Metric tensors of direct and reciprocal lattices
64(1)
1.5.23 Transformation of matrix-column pairs of symmetry operations
64(1)
1.5.2.4 Example: paraelectric-to-ferroelectric phase transition of GeTe
64(2)
1.53 Transformations between different space-group descriptions (Gervais Chapuis, Hans Wondratschek and Mois I. Aroyo)
66(1)
1.53.1 Space groups with more than one description in IT A
66(1)
133.2 Examples
67(2)
13.4 Synoptic tables of plane and space groups (Bernd Souvignier, Gervais Chapuis and Hans Wondratschek)
69(6)
1.6 Introduction to the theory and practice of space-group determination (Uri Shmueli, Howard D. Flack and John C. H. Spence)
75(14)
1.6.1 Overview
75(1)
1.6.2 Symmetry determination from single-crystal studies (Uri Shmueli and Howard D. Flack)
75(1)
1.6.2.1 Symmetry information from the diffraction pattern
75(1)
1.6.2.2 Structure-factor statistics and crystal symmetry
76(2)
1.6.2.3 Symmetry information from the structure solution
78(1)
1.6.2.4 Restrictions on space groups
78(1)
1.6.23 Pitfalls in space-group determination
79(1)
1.6.3 Theoretical background of reflection conditions (Uri Shmueli)
79(1)
1.6.3.1 Example: a determination of reflection conditions
80(1)
1.6.4 Reflection conditions and possible space groups (Howard D. Flack and Uri Shmueli)
81(1)
1.6.4.1 Introduction
81(1)
1.6.4.2 Examples
82(1)
1.6.5 Space-group determination in macromolecular crystallography (Howard D. Flack)
83(1)
1.6.6 Space groups for nanocrystals by electron microscopy (John C. H. Spence)
83(1)
1.6.7 Examples (Howard D. Flack)
84(1)
1.6.7.1 Example (1), 4-chlorophenol, C6H5OCl
84(1)
1.6.7.2 Example (2), [ BDTA]2[ CuCl4]
85(1)
1.6.7.3 Example (3), flol9, C62H46N14
86(1)
1.6.7.4 Example (4), CSD refcode FOYTAO01, C12H20O6
86(3)
1.7 Applications of crystallographic symmetry: space-group symmetry relations, subperiodic groups and magnetic symmetry (Hans Wondratschek, Ulrich Muller, Daniel B. Litvin, Vojtech Kopsky and Carolyn Pratt Brock)
89(18)
1.7.1 Subgroups and supergroups of space groups (Hans Wondratschek)
89(1)
1.7.1.1 Translationengleiche (or (-) subgroups of space groups
90(1)
1.7.1.2 Klassengleiche (or k-) subgroups of space groups
91(1)
1.7.1.3 Isomorphic subgroups of space groups
91(1)
1.7.1.4 Supergroups
91(1)
1.7.2 Relations between Wyckoff positions for group-subgroup-related space groups (Ulrich Moller)
92(1)
1.7.2.1 Symmetry relations between crystal structures
92(1)
1.7.2.2 Substitution derivatives
92(1)
1.7.2.3 Phase transitions
92(1)
1.7.2.4 Domain structures
93(1)
1.7.2.5 Presentation of the relations between the Wyckoff positions among group-subgroup-related space groups
93(1)
1.7.3 Subperiodic groups
94(1)
1.7.3.1 Relationships between space groups and subperiodic groups (Daniel B. Litvin and Vojtech Kopsky)
94(2)
1.7.3.2 Use of subperiodic groups to describe structural units (Carolyn Pratt Brock)
96(2)
1.7.3.3 Applications of rod groups (Ulrich Muller)
98(2)
1.7.4 Magnetic subperiodic groups and magnetic space groups (Daniel B. Litvin)
100(1)
1.7.4.1 Introduction
100(1)
1.7.4.2 Survey of magnetic subperiodic groups and magnetic space groups
101(6)
Part 2 Crystallographic Symmetry Data
107(127)
2.1 Guide to and examples of the space-group tables in IT A (Theo Hahn, Aafje Looijenga-Vos, Mois I. Aroyo, Howard D. Flack and Koichi Momma)
108(104)
2.1.1 Conventional descriptions of plane and space groups (Theo Hahn and Aafje Looijenga-Vos)
108(1)
2.1.1.1 Classification of space groups
108(1)
2.1.1.2 Conventional coordinate systems and cells
108(2)
2.1.2 Symbols of symmetry elements (Theo Hahn and Mois I. Aroyo)
110(6)
2.1.3 Contents and arrangement of the tables (Theo Hahn, Aafje Looijenga-Vos, Mois I. Aroyo, Howard D. Flack and Koichi Momma)
116(1)
2.1.3.1 General layout
116(1)
2.1.3.2 Space groups with more than one description
116(1)
2.1.3.3 Headline
117(1)
2.1.3.4 International (Hermann-Mauguin) symbols for plane groups and space groups
117(1)
2.1.3.5 Patterson symmetry
118(1)
2.1.3.6 Space-group diagrams
119(4)
2.1.3.7 Origin
123(1)
2.1.3.8 Asymmetric unit
123(1)
2.1.3.9 Symmetry operations
124(1)
2.1.3.10 Generators
125(1)
2.1.3.11 Positions
126(1)
2.1.3.12 Oriented site-symmetry symbols
126(1)
2.1.3.13 Reflection conditions
127(3)
2.1.3.14 Symmetry of special projections
130(1)
2.1.3.15 Crystallographic groups in one dimension
131(1)
2.1.4 Examples of plane- and space-group tables
131(81)
2.2 The symmetry-relations tables of IT Al (Hans Wondratschek, Mois t Aroyo and Ulrich Muller)
212(5)
2.2.1 Guide to the subgroup tables (Hans Wondratschek and Mois I. Aroyo)
212(1)
2.2.1.1 Contents and arrangement of the subgroup tables
212(1)
2.2.1.2.1 Maximal translationengleiche subgroups (/-subgroups)
212(1)
2.2.13 II Maximal klassengleiche subgroups (fc-subgroups)
213(1)
2.2.14 Minimal supergroups
214(1)
2.2.2 Examples of the subgroup tables
214(3)
2.23 Guide to the tables of relations between Wyckoff positions (Ulrich Muller)
217(2)
2.23.1 Guide to the use of the tables
217(2)
2.23.2 Cell transformations
219(1)
2.233 Origin shifts
219(5)
2.23.4 Nonconventional settings of orthorhombic space groups
219(1)
2.2.4 Examples of the tables of relations between Wyckoff positions
220(4)
2.3 The subperiodic group tables of IT E (Daniel B. Litvin)
224(1)
23.1 Guide to the subperiodic group tables
224(1)
23.1.1 Content and arrangement of the tables
224(1)
2.3.1.2 Diagrams for the symmetry elements and the general position
225(1)
23.13 Symmetry operations
225(7)
23.1.4 Subgroups and supergroups
225(1)
2.3.2 Examples of subperiodic group tables
225(7)
2.4 The Symmetry Database (Eli Kroumova, Gemma de la Flor and Mois I. Aroyo)
232(1)
2.4.1 Space-group symmetry data
232(1)
2.4.2 Symmetry relations between space groups
233(1)
2.43 3D Crystallographic point groups
233(1)
2.4.4 Availability
233(1)
Subject Index 234