Atjaunināt sīkdatņu piekrišanu

E-grāmata: Internet of Things and Sensor Network for COVID-19

  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book examines various models/solutions in areas, such as individuals, home, work and society, where IoT and AI are being utilized to mitigate the Covid-19 pandemic. The world is battling with the novel coronavirus, and government authorities, scientists, medical practitioners, and medical services are striving hard to help people to face the challenges.  During this crisis, numerous innovative ideas and solutions have been proposed for using the Internet of things (IoT), sensor networks, and artificial intelligence (AI) to monitor the wellbeing of individuals. Nations are using all available assets to help develop cutting-edge innovations to relieve the impacts of Covid-19 and profile individuals in danger. The advances in IoT frameworks and sensor technologies together with AI are invaluable in the context of this pandemic, and nations and various entities around the globe are discovering innovative solutions to maintain businesses and help people live alongside Covid-19. This book presents the advances in sensor technologies, IoT frameworks, and explores how these technologies are being used to deal with the issues arising from Covid-19, including work in progress and potential applications.

 


Chapter
1. Introduction.
Chapter 2. IoT and Sensor Network.-Chapter
3. IoT, sensor, and COVID.
Chapter 4. IoT Systems Available and how they are
Helping to Mitigate COVID-19 Challenges.
Chapter 5. Future Possible
Applications or Under Development.- Chapter
6. Conclusions.
Dr. Siba K Udgata is currently a Professor of Computer and Information Sciences at the University of Hyderabad, India, where he directs a research group focusing on sensor networks, IoT, wireless communications, and intelligent algorithms. He worked as a Research Fellow at the United Nations University/International Institute of Software Technology (UNU/IIST), Macau. He has published more than 100 research papers in peer-reviewed journals and at international conferences. He has edited ten international conference proceedings for Springer LNAI, AISC and SIST. He is a recipient of the IBM SUR (Shared University Research) award for the project Mobile Sensor network based rescue management system. He has successfully completed seven Government of India sponsored research projects in the domain of sensor network, IoT, and cognitive radio network.

 

Dr. Nagender Kumar Suryadevara received his Ph.D. degree from the School of Engineering and Advanced Technology,Massey University, New Zealand, in 2014. He has authored/co-authored two books and over 45 papers in various international journals, conferences, and book chapters. His research interests include wireless sensor networks, the Internet of things, and time-series data mining.