Atjaunināt sīkdatņu piekrišanu

E-grāmata: Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure

Edited by (Assistant Professor, Department of Civil and Environmental Engineering and Earth Sciences, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC, United States)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 191,98 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure highlights the growing trend of fostering machine learning to realize contemporary, smart, and safe infrastructure.

This volume delves into the latest advancements in machine learning and artificial intelligence, providing readers with practical insights into their applications in the analysis, design, and assessment of civil infrastructure. From the innovative use of Generative Adversarial Networks in the design of shear wall structures to the application of deep learning for damage inspection of concrete structures, each chapter offers a unique perspective on the integration of cutting-edge technology in the field. Explore the potential of AI-driven fire safety design for smart buildings, the challenges and promises of large-scale evacuation modeling, and the use of machine learning classifiers for evaluating liquefaction potential. The book also features an in-depth discussion on explainable machine learning models for predicting the axial capacity of strengthened CFST columns and the development of spalling detection techniques using deep learning. Whether you are a civil engineer, researcher, or industry professional, this book is an invaluable resource that will equip you with the knowledge and tools to revolutionize civil infrastructure design and management.

This book presents innovative research results supplemented with case studies from leading researchers in this dynamic and emerging field to be used as benchmarks to carry out future experiments and/or facilitate the development of future experiments and advanced numerical models. The book is delivered as a guide for a wide audience, including senior postgraduate students, academic and industrial researchers, materials scientists, and practicing engineers working in civil, environmental, and mechanical engineering.

1. Integrated schematic design method for shear wall structures: A practical application of generative adversarial networks
2. Leveraging machine learning techniques to support a holistic performance-based seismic design of civil structures
3. Deep learning-based damage inspection for concrete structures
4. Explainable computational intelligence method to evaluate the damage on concrete surfaces compared to traditional visual inspection techniques
5. Smart building fire safety design driven by artificial intelligence
6. The potential of deep learning in dynamic maintenance scheduling for thermal energy storage chiller plants
7. The use of IDA on GPR data to monitor road transport infrastructures
8. Ai for large-scale evacuation modelling: promises and challenges
9. On the application of machine learning classifiers in evaluating liquefaction potential of civil infrastructure
10. Explainable machine learning model for prediction of axial capacity of strengthened CFST columns
11. Harnessing data from benchmark testing for the development of spalling detection techniques using deep learning

M. Z. Naser is a tenure-track Assistant Professor at the Department of Civil and Environmental Engineering and Earth Sciences and a member of the Artificial Intelligence Research Institute for Science and Engineering (AIRISE) at Clemson University. At the moment, his research group is creating causal & eXplainable machine learning methodologies to discover new knowledge hidden within systems belonging to the domains of structural engineering and materials science to help realize functional, sustainable, and resilient infrastructure. He is currently serving as the chair of the ASCE Advances in Information Technology committee and on a number of international editorial boards, as well as codal building committees (in ASCE, ACI, PCI, and FiB). He is a registered professional engineer in the states of Michigan and South Carolina.