Atjaunināt sīkdatņu piekrišanu

E-grāmata: Interpreting and Comparing Effects in Logistic, Probit, and Logit Regression

  • Formāts - PDF+DRM
  • Cena: 34,49 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Log-linear, logit and logistic regression models are the most common ways of analyzing data when (at least) the dependent variable is categorical. This volume shows how to compare coefficient estimates from regression models for categorical dependent variables in three typical research situations: (i) within one equation, (ii) between identical equations estimated in different subgroups, and (iii) between nested equations. Each of these three kinds of comparisons brings along its own particular form of comparison problems. Further, in all three areas, the precise nature of comparison problems in logistic regression depends on how the logistic regression model is looked at and how the effects of the independent variables are computed. This volume presents a practical, unified treatment of these problems, and considers the advantages and disadvantages of each approach, and when to use them, so that applied researchers can make the best choice related to their research problem. The techniques are illustrated with data from simulation experiments and from publicly available surveys. The datasets, along with Stata syntax, are available on a companion website.

Recenzijas

This book has very clear, pristine explanations of topics such as how DRMs work, great numerical methods for maximizing and specifying, and helpful explanatory tests and interpretative effects, all written at an intermediate level. The discussion of various ways of interpreting coefficients in each of the models is the most useful part of the text. While many other texts touch on the difficulties of interpreting coefficients and perhaps offer an approach or two, the authors of this volume thoroughly review multiple approaches common and unique to each of the models. -- Kara Sutton This book has a well-organized structure and includes coverage of useful information and skills in the logistic regression. Scholars can apply these models to their own research projects. -- Jingshun Zhang

Chapter
1. Introduction
Chapter
2. Regression Models for A Dichotomous Dependent Variable
Chapter
3. Interpreting And Comparing Effects Within One Equation
Chapter
4. Comparing Subgroups Or Time Points: Investigating Interaction Effects
Chapter
5. Causal Modeling: Estimating Total, Direct, Indirect And Spurious Effects; Using Effect Coefficients From Different (Nested) Equations
Chapter
6. Concluding Remarks; Extensions, Effect Measures And Evaluation