Atjaunināt sīkdatņu piekrišanu

Intradermal Immunization 2012 [Hardback]

  • Formāts: Hardback, 254 pages, height x width: 235x155 mm, weight: 565 g, X, 254 p., 1 Hardback
  • Sērija : Current Topics in Microbiology and Immunology 351
  • Izdošanas datums: 17-Sep-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642236898
  • ISBN-13: 9783642236891
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 254 pages, height x width: 235x155 mm, weight: 565 g, X, 254 p., 1 Hardback
  • Sērija : Current Topics in Microbiology and Immunology 351
  • Izdošanas datums: 17-Sep-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642236898
  • ISBN-13: 9783642236891
Citas grāmatas par šo tēmu:
This volume of Current Topics in Microbiology and Immunology covers diverse topics related to intradermal immunization. The  chapters highlight the effectiveness of intradermal immunization in experimental animal models or in clinical practice, all supporting the view that intradermal immunization is at least as good as other immunization routes. Keeping in mind that current vaccines are not specially designed for intradermal immunization, but show comparable efficiency even at reduced dosages, this underlines the great potential for the skin as a vaccination site. Hopefully, the overview in this volume will encourage vaccine designers to focus on this promising immunization route, and in addition, to inspire them to develop vaccines that are especially optimized for intradermal immunization.
Understanding the Murine Cutaneous Dendritic Cell Network to Improve Intradermal Vaccination Strategies 1(24)
F. Ginhoux
L.G. Ng
M. Merad
1 Introduction
2(1)
2 The Skin Dendritic Cell Network
3(3)
2.1 Langerhans Cells
3(1)
2.2 Dermal DC Subsets in Steady-State
3(2)
2.3 Localization of Dermal DC Subsets
5(1)
2.4 Inflammatory Dermal DC Subsets
5(1)
3 Homeostasis of Cutaneous DCs
6(20)
3.1 Proliferation
6(1)
3.2 Migration
6(1)
3.3 Origin of Cutaneous DCs
7(18)
Insight into the Immunobiology of Human Skin and Functional Specialization of Skin Dendritic Cell Subsets to Innovate Intradermal Vaccination Design 25(52)
M.B.M. Teunissen
M. Haniffa
M.P. Collin
1 Introduction
26(2)
1.1 Skin as Defense Organ
26(1)
1.2 Skin as Target for Vaccine Administration
27(1)
2 Immunobiology of Human Skin
28(6)
2.1 Functional Anatomy
28(3)
2.2 Skin-Associated Innate and Adaptive Immunology
31(3)
3 DCs are Key Regulators of Immune Responses
34(7)
3.1 Detection of Danger
34(2)
3.2 Uptake and Processing of Antigen
36(3)
3.3 Translation of Sensed Danger to Adequate T-cell Responses
39(2)
4 Human DC Subsets
41(3)
4.1 Surface Markers
41(1)
4.2 Human Blood DC Subsets
42(1)
4.3 Human Lymphoid Tissue DC Subsets
43(1)
5 DC Subsets in Human Skin
44(9)
5.1 Epidermal Langerhans cells
44(2)
5.2 Dermal DCs
46(2)
5.3 Dermal Macrophages
48(1)
5.4 DC Subsets in Inflamed Skin
49(4)
6 Relationship Between DC Subsets
53(3)
6.1 Ontogeny of Human DCs
53(1)
6.2 Functional Specialization of Cutaneous DCs in Humans
54(2)
7 Intradermal Vaccination and Skin DCs
56(4)
7.1 Which Skin DC Subset is Important?
56(2)
7.2 Improvement of Intradermal Vaccination
58(2)
8 Concluding Remarks and Perspectives
60(1)
References
61(16)
Delivery Systems for Intradermal Vaccination 77(36)
Y.C. Kim
C. Jarrahian
D. Zehrung
S. Mitragotri
M.R. Prausnitz
1 Introduction
78(4)
1.1 Immunologic Motivation for Intradermal Delivery
78(1)
1.2 Current Intradermal Vaccines
79(1)
1.3 Clinical Studies on other Intradermal Vaccines
80(2)
1.4 Difficulties to Make Intradermal Delivery More Widespread
82(1)
2 Injecting into the Skin
82(4)
2.1 Hypodermic Needles: Mantoux Intradermal Injection
82(2)
2.2 Single Hollow Microneedles
84(2)
2.3 Arrays of Hollow Microneedles
86(1)
3 Shooting into the Skin
86(4)
3.1 Jet Injector
86(3)
3.2 Projectile Delivery
89(1)
4 Piercing into the Skin
90(5)
4.1 Bifurcated Needles
90(1)
4.2 Solid Microneedles
90(4)
4.3 Tattoo Vaccination
94(1)
5 Permeabilizing the Skin
95(5)
5.1 Abrasion
96(1)
5.2 Ultrasound
97(1)
5.3 Electroporation
98(1)
5.4 Chemical Enhancers
99(1)
5.5 Thermal Ablation
100(1)
6 Discussion
100(4)
6.1 Immunologic Advantages of Intradermal Vaccination
100(1)
6.2 Logistical Advantages of Intradermal Vaccination
101(2)
6.3 Future Outlook
103(1)
References
104(9)
Targeting Skin Dendritic Cells to Improve Intradermal Vaccination 113(26)
N. Romani
V. Flacher
C.H. Tripp
F. Sparber
S. Ebner
P. Stoitzner
1 Modern Vaccine Science-Devising Rational Vaccines
114(1)
2 Skin Dendritic Cells are Recipients of Intradermal Vaccines
115(6)
2.1 Langerhans Cells
115(1)
2.2 Dermal Langerin- Dendritic Cells
116(3)
2.3 Dermal Langerin+ Dendritic Cells
119(1)
2.4 Which Subset of Skin Dendritic Cells is the Major Recipient of an Intradermal Vaccine?
120(1)
3 Functional Repertoire of Skin Dendritic Cells
121(2)
4 Harnessing the Distinct Properties of Skin Dendritic Cells for Intradermal Vaccination
123(7)
4.1 Augment Lymphocyte Responses by Targeting Vaccine to Specific Antigen Uptake Receptors on Skin Dendritic Cells
123(6)
4.2 Augment and Broaden Responses by Including innate Lymphocyte Responses
129(1)
5 Concluding Remarks
130(1)
References
131(8)
Intradermal Rabies Vaccination: The Evolution and Future of Pre- and Post-exposure Prophylaxis 139(20)
M.J. Warren
1 Introduction
140(2)
2 The Beginning of ID Use of Rabies Vaccine
142(2)
2.1 Site of Injection
142(1)
2.2 Experiments with Tissue Culture Vaccines ID for Pre-exposure Use
142(1)
2.3 Varying ID Doses and Side Effects
143(1)
2.4 The Effects of Incorrect ID Injection Technique
143(1)
3 Pre-exposure Immunisation
144(2)
3.1 The Introduction of ID Pre-exposure Vaccination
144(1)
3.2 Current Practice of ID Pre-exposure Rabies Prophylaxis
145(1)
4 Post-exposure Immunisation
146(5)
4.1 Rabies Tissue Culture Vaccines ID for Post-exposure Prophylaxis
146(1)
4.2 The Evolution of the First Economical Multi-Site ID Post-exposure Regimen
147(1)
4.3 Eight-Site ID Regimen
147(1)
4.4 Two-Site ID Regimen
148(1)
4.5 The Relationship Between ID Vaccine Dose and Immunogenicity
148(1)
4.6 Problems with ID Post-exposure Vaccine Regimens
149(1)
4.7 Four-Site ID Regimen
149(1)
4.8 Practical Aspects of the Four-Site ID Regimen
150(1)
5 Post-exposure Vaccination in Previously Immunised Patients
151(1)
5.1 A New Single-Day ID Regimen
151(1)
6 The Future?
151(2)
6.1 In Developing Countries
151(1)
6.2 In Developed Countries
152(1)
References
153(6)
Intradermal Vaccination to Protect Against Yellow Fever and Influenza 159(22)
A.H.E. Roukens
L.B.S. Gelinck
L.G. Visser
1 Introduction
160(1)
2 Clinical Consequences of Infection
160(2)
2.1 Yellow Fever
160(1)
2.2 Influenza
161(1)
3 History of Vaccination
162(3)
3.1 Yellow Fever Vaccine Development
162(1)
3.2 Yellow Fever Vaccine: Correlates of Protection
163(1)
3.3 Influenza Vaccine Development
163(1)
3.4 Influenza Vaccine: Correlates of Protection
164(1)
4 Immune Response Against Yellow Fever Vaccine and Influenza Vaccine
165(4)
4.1 Response Against Yellow Fever Vaccine in Immunocompetent Persons
165(1)
4.2 Response Against Yellow Fever Vaccine in lmmunocompromized Persons
166(2)
4.3 Response against Influenza Vaccine in Immunocompetent Persons
168(1)
4.4 Response against Influenza Vaccine in Immunocompromized Persons
169(1)
5 Increased Vaccine Coverage by Reduced-Dose Intradermal Vaccination
169(5)
5.1 Intradermal Administration of Yellow Fever Vaccine
169(1)
5.2 Intradermal Administration of Influenza Vaccine
170(2)
5.3 Immunological Background of Intradermal Immunization
172(2)
6 State-of the-Art: Future Perspectives
174(1)
References
175(6)
The Dermis as a Portal for Dendritic Cell-Targeted Immunotherapy of Cutaneous Melanoma 181(40)
D. Oosterhoff
B.J.R. Sluijter
B.N. Hangalapura
T.D. de Gruijl
1 Introduction
182(2)
2 The Challenges of Generating Anti-Melanoma Immunity
184(1)
3 The Immune Microenvironment and Dendritic Cell Subsets of the Skin
185(7)
3.1 Langerhans Cells
187(1)
3.2 CDIa+ Dermal Dendritic Cells
188(1)
3.3 CDI4+ Dermal Dendritic Cells and Dermal Macrophages
189(1)
3.4 Plasmacytoid Dendritic Cells
190(1)
3.5 Dendritic Cell Subsets in Skin-Draining LN
190(2)
4 Subverting the Immune Response: Melanoma-Induced Dendritic Cell Suppression
192(1)
5 Dendritic Cell Suppression in the Skin: Lessons from Human Skin Explant Studies
193(2)
6 Local lmmunopotentiation of the Primary Melanoma Site and the Skin-Draining LN
195(8)
6.1 Dendritic Cell-Stimulatory Cytokines
195(3)
6.2 TLR-Ligands
198(2)
6.3 Inununomodulatory Antibodies
200(3)
7 Dendritic Cell-Targeted Vaccines in the Skin Microenvironment
203(1)
8 CD40-Targeted Adenovirus: a Dendritic Cell-Targeting Vaccine Delivered to the Dennis
204(2)
9 Summary and Conclusions
206(1)
References
207(14)
DNA Vaccines and Intradermal Vaccination by DNA Tattooing 221(30)
K. Oosterhuis
J.H. van den Berg
T.N. Schumacher
J.B.A.G. Haanen
1 An Introduction on Two Decades of DNA Vaccination
222(1)
2 Advantages of DNA Vaccination Compared to Conventional Vaccine Platforms
223(3)
2.1 Ease and Speed of Production
223(1)
2.2 Ability to Induce Cellular Immunity
224(1)
2.3 Lack of Vector-Specific Immune Responses
224(1)
2.4 Favorable Safety Profile
225(1)
3 Mechanism of T cell Priming upon DNA Vaccination
226(4)
3.1 Direct- Versus Cross-priming
226(2)
3.2 Influencing Antigen Properties
228(2)
4 Origin of the "Danger Signal" in DNA Vaccines
230(3)
4.1 Danger in 'Naked' DNA
230(1)
4.2 Administration-Induced Danger
231(2)
5 Optimizing DNA Vaccination by Intradermal Tattooing
233(1)
6 Mechanism of Immune Induction upon DNA Tattooing
234(1)
6.1 Antigen Expression and Priming
234(1)
6.2 Provision of Danger Signals
234(1)
7 DNA Tattoo Versus Other DNA Delivery Techniques
235(5)
7.1 Intramuscular Injection
236(1)
7.2 Particle-Mediated Epidermal Delivery
237(1)
7.3 Electroporation-Mediated Gene Transfer
238(1)
7.4 Jet Injection
239(1)
7.5 Microneedle-Assisted Gene Transfer
239(1)
7.6 Concluding Remarks on the Different DNA Vaccine Delivery Methods
240(1)
8 Clinical Translation of Intradermal DNA Tattooing
240(2)
8.1 Ex Vivo Human Skin Model
240(2)
8.2 Ongoing and Planned Clinical Trials
242(1)
9 Opinion on Usefulness of lntradermal DNA Vaccination, Large-Scale Use of DNA Tattoo, and Future Perspectives
242(1)
10 Conclusion
243(1)
References
244(7)
Index 251