Preface |
|
xi | |
|
|
1 | (22) |
|
1.1 Assets and Portfolios |
|
|
1 | (3) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
1.1.5 Interest Rates and Present Value |
|
|
2 | (2) |
|
1.2 Payoff and Profit Graphs |
|
|
4 | (2) |
|
1.2.1 Payoff Graphs for Forward Contracts |
|
|
4 | (1) |
|
1.2.2 Payoff and Profit Graphs for Options |
|
|
4 | (2) |
|
1.2.3 Payoff and Profit Graphs for Contingent Options |
|
|
6 | (1) |
|
|
6 | (6) |
|
1.3.1 Random Variables and Stochastic Processes |
|
|
7 | (3) |
|
1.3.2 Deterministic Arbitrages |
|
|
10 | (1) |
|
1.3.3 Arbitrage and Expected Value |
|
|
11 | (1) |
|
1.4 No Arbitrage and Its Consequences |
|
|
12 | (8) |
|
|
13 | (1) |
|
1.4.2 Martingales and Fair Prices |
|
|
14 | (1) |
|
1.4.3 No-Arbitrage Price Equalities |
|
|
15 | (4) |
|
1.4.4 No-Arbitrage Inequalities |
|
|
19 | (1) |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
23 | (26) |
|
2.1 Some Facts from Probability Theory |
|
|
23 | (1) |
|
2.2 Understanding Brownian Motion |
|
|
24 | (3) |
|
2.3 The Black-Scholes Formula |
|
|
27 | (7) |
|
|
29 | (2) |
|
|
31 | (1) |
|
2.3.3 Black-Scholes Greeks |
|
|
32 | (2) |
|
|
34 | (12) |
|
2.4.1 Numerical Differentiation |
|
|
35 | (2) |
|
|
37 | (3) |
|
|
40 | (6) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (38) |
|
3.1 One-Step, Two-State Models |
|
|
49 | (10) |
|
3.1.1 Risk Neutral Probabilities |
|
|
50 | (1) |
|
3.1.2 Pricing Derivatives by Hedging |
|
|
51 | (4) |
|
3.1.3 Pricing Foreign Exchange Derivatives by Hedging |
|
|
55 | (2) |
|
3.1.4 Zero-Coupon Bonds of Different Maturity |
|
|
57 | (2) |
|
3.2 One-Step, Multistate Models |
|
|
59 | (2) |
|
3.3 Multistep Binomial Models |
|
|
61 | (12) |
|
|
62 | (1) |
|
3.3.2 Generalized Backward Induction Pricing |
|
|
63 | (3) |
|
3.3.3 Arrow-Debreu Securities |
|
|
66 | (2) |
|
3.3.4 Jamshidian's Forward Induction Formula |
|
|
68 | (3) |
|
3.3.5 Zero-Coupon Bonds and Interest Rate Constraints |
|
|
71 | (2) |
|
3.4 The Cox-Ross-Rubinstein Model |
|
|
73 | (11) |
|
3.4.1 Arrow-Debreu Decomposition in CRR |
|
|
74 | (4) |
|
3.4.2 Limit of CRR as N → θ |
|
|
78 | (4) |
|
|
82 | (2) |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
87 | (42) |
|
4.1 Recombining Binomial Tree Prices |
|
|
87 | (17) |
|
4.1.1 European-Style Options in CRR |
|
|
88 | (1) |
|
4.1.2 American-Style Options in CRR |
|
|
89 | (1) |
|
4.1.3 Binary Options in CRR |
|
|
90 | (2) |
|
4.1.4 Compound Options in CRR |
|
|
92 | (1) |
|
4.1.5 Chooser Options in CRR |
|
|
93 | (1) |
|
4.1.6 Forward Start Options in CRR |
|
|
94 | (2) |
|
|
96 | (6) |
|
|
102 | (2) |
|
4.2 Path Dependent Prices |
|
|
104 | (22) |
|
4.2.1 Efficient Data Structures |
|
|
104 | (4) |
|
4.2.2 Paths in Recombining Trees |
|
|
108 | (3) |
|
4.2.3 Path Dependent Arrow-Debreu Securities |
|
|
111 | (2) |
|
4.2.4 Asian-Style Options |
|
|
113 | (7) |
|
4.2.5 Floating Strike Options |
|
|
120 | (2) |
|
|
122 | (2) |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (16) |
|
5.1 Discrete Models for Forwards |
|
|
129 | (2) |
|
5.1.1 No-Arbitrage Forwards Values |
|
|
130 | (1) |
|
5.1.2 Binomial Models for Forwards Prices |
|
|
131 | (1) |
|
5.2 Discrete Models for Futures |
|
|
131 | (11) |
|
5.2.1 Binomial Models for Futures Prices |
|
|
133 | (3) |
|
5.2.2 No-Arbitrage Futures Values |
|
|
136 | (3) |
|
5.2.3 Margin Calls and Defaults |
|
|
139 | (3) |
|
|
142 | (1) |
|
|
143 | (2) |
|
|
145 | (30) |
|
6.1 Stocks with Dividends |
|
|
145 | (16) |
|
6.1.1 Effects on Forwards |
|
|
146 | (3) |
|
6.1.2 Effects on American Call Options |
|
|
149 | (2) |
|
6.1.3 Dividends as Cash Flows |
|
|
151 | (10) |
|
|
161 | (11) |
|
|
162 | (1) |
|
|
163 | (3) |
|
|
166 | (3) |
|
|
169 | (3) |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
175 | (16) |
|
7.1 The Inverse Problem for Volatility |
|
|
175 | (2) |
|
7.2 Implied Volatility Surfaces |
|
|
177 | (3) |
|
7.3 Implied Binomial Trees |
|
|
180 | (8) |
|
7.3.1 Path Independent Probabilities |
|
|
181 | (1) |
|
7.3.2 Jackwerth's Generalization |
|
|
182 | (3) |
|
7.3.3 Rubinstein's One-Two-Three Algorithm |
|
|
185 | (3) |
|
|
188 | (1) |
|
|
189 | (2) |
|
|
191 | (26) |
|
8.1 Finite Financial Models |
|
|
191 | (4) |
|
8.1.1 Arbitrage and Positivity |
|
|
194 | (1) |
|
8.1.2 Fundamental Theorems of Asset Pricing |
|
|
195 | (1) |
|
8.2 Applications of the Fundamental Theorems |
|
|
195 | (8) |
|
|
196 | (1) |
|
|
197 | (2) |
|
|
199 | (4) |
|
8.3 Cones, Convexity, and Duals |
|
|
203 | (11) |
|
8.3.1 Open and Closed Sets |
|
|
205 | (2) |
|
8.3.2 Dual Cones and Double Duals |
|
|
207 | (3) |
|
8.3.3 Proofs of the Fundamental Theorems |
|
|
210 | (1) |
|
|
211 | (1) |
|
8.3.5 Hyperplane Separation |
|
|
212 | (2) |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
217 | (2) |
|
|
219 | (70) |
|
A.1 To Chapter 1 Exercises |
|
|
219 | (8) |
|
A.2 To Chapter 2 Exercises |
|
|
227 | (12) |
|
A.3 To Chapter 3 Exercises |
|
|
239 | (10) |
|
A.4 To Chapter 4 Exercises |
|
|
249 | (9) |
|
A.5 To Chapter 5 Exercises |
|
|
258 | (6) |
|
A.6 To Chapter 6 Exercises |
|
|
264 | (9) |
|
A.7 To Chapter 7 Exercises |
|
|
273 | (6) |
|
A.8 To Chapter 8 Exercises |
|
|
279 | (10) |
Index |
|
289 | |