|
|
1 | (24) |
|
|
1 | (2) |
|
|
3 | (10) |
|
|
3 | (3) |
|
|
6 | (3) |
|
1.2.3 Functions and operations |
|
|
9 | (2) |
|
1.2.4 Logic and truth tables |
|
|
11 | (2) |
|
|
13 | (5) |
|
1.4 Polynomials and matrices |
|
|
18 | (7) |
|
|
18 | (2) |
|
|
20 | (5) |
|
|
25 | (40) |
|
|
25 | (10) |
|
|
25 | (1) |
|
|
26 | (2) |
|
2.1.3 Properties of rings |
|
|
28 | (3) |
|
|
31 | (4) |
|
2.2 Homomorphisms and ideals |
|
|
35 | (12) |
|
|
35 | (1) |
|
2.2.2 Homomorphisms and ideals |
|
|
36 | (4) |
|
2.2.3 Factor rings and isomorphism theorems |
|
|
40 | (4) |
|
|
44 | (3) |
|
|
47 | (12) |
|
2.3.1 Zero divisors and units |
|
|
47 | (2) |
|
2.3.2 Irreducibles and factorisation |
|
|
49 | (2) |
|
2.3.3 Principal ideal domains |
|
|
51 | (3) |
|
|
54 | (5) |
|
|
59 | (4) |
|
|
59 | (1) |
|
2.4.2 Maximal ideals and fields |
|
|
60 | (1) |
|
2.4.3 Field extensions, finite fields |
|
|
61 | (2) |
|
Appendix: Solution to Exercise 2.10 |
|
|
63 | (2) |
|
|
65 | (38) |
|
|
65 | (9) |
|
|
65 | (1) |
|
|
66 | (3) |
|
3.1.3 Properties of groups |
|
|
69 | (2) |
|
|
71 | (3) |
|
|
74 | (4) |
|
|
74 | (1) |
|
3.2.2 Orders; Lagrange's Theorem |
|
|
75 | (1) |
|
|
76 | (2) |
|
3.3 Homomorphisms and normal subgroups |
|
|
78 | (9) |
|
|
78 | (3) |
|
3.3.2 Factor groups and isomorphism theorems |
|
|
81 | (2) |
|
|
83 | (4) |
|
|
87 | (14) |
|
|
87 | (2) |
|
|
89 | (2) |
|
3.4.3 Symmetric and alternating groups |
|
|
91 | (4) |
|
|
95 | (6) |
|
Appendix: How many groups? |
|
|
101 | (2) |
|
|
103 | (32) |
|
4.1 Vector spaces and subspaces |
|
|
103 | (11) |
|
|
103 | (2) |
|
|
105 | (2) |
|
4.1.3 Properties of vector spaces |
|
|
107 | (1) |
|
|
107 | (1) |
|
4.1.5 Linear independence and bases |
|
|
108 | (4) |
|
4.1.6 Intersection and sum |
|
|
112 | (2) |
|
4.2 Linear transformations and matrices |
|
|
114 | (21) |
|
4.2.1 Linear transformations |
|
|
114 | (3) |
|
|
117 | (1) |
|
|
118 | (2) |
|
4.2.4 Elementary operations |
|
|
120 | (6) |
|
|
126 | (5) |
|
4.2.6 Matrices over Euclidean domains |
|
|
131 | (4) |
|
|
135 | (24) |
|
|
135 | (8) |
|
5.1.1 Definition of modules |
|
|
135 | (2) |
|
5.1.2 Examples of modules |
|
|
137 | (2) |
|
5.1.3 Submodules and homomorphisms |
|
|
139 | (1) |
|
5.1.4 Annihilators, cyclic modules, direct sums |
|
|
139 | (4) |
|
5.2 Modules over a Euclidean domain |
|
|
143 | (6) |
|
5.2.1 The structure theorem |
|
|
143 | (3) |
|
5.2.2 The primary decomposition |
|
|
146 | (3) |
|
|
149 | (10) |
|
5.3.1 Finitely generated abelian groups |
|
|
149 | (2) |
|
5.3.2 Normal forms of matrices |
|
|
151 | (3) |
|
5.3.3 The Cayley-Hamilton Theorem |
|
|
154 | (5) |
|
|
159 | (22) |
|
6.1 To the complex numbers |
|
|
160 | (10) |
|
6.1.1 The natural numbers |
|
|
160 | (2) |
|
|
162 | (2) |
|
6.1.3 The rational numbers |
|
|
164 | (1) |
|
|
165 | (3) |
|
6.1.5 The complex numbers |
|
|
168 | (2) |
|
6.2 Algebraic and transcendental numbers |
|
|
170 | (11) |
|
|
170 | (3) |
|
6.2.2 Transcendental numbers |
|
|
173 | (5) |
|
6.2.3 Ruler-and-compass constructions |
|
|
178 | (3) |
|
|
181 | (54) |
|
|
181 | (14) |
|
7.1.1 Permutation groups and group actions |
|
|
181 | (2) |
|
|
183 | (2) |
|
7.1.3 The Jordan-Holder Theorem |
|
|
185 | (1) |
|
|
186 | (2) |
|
|
188 | (2) |
|
|
190 | (3) |
|
7.1.7 A glimpse at homological algebra |
|
|
193 | (2) |
|
|
195 | (9) |
|
|
195 | (1) |
|
|
196 | (2) |
|
|
198 | (1) |
|
7.2.4 Eisenstein's criterion |
|
|
199 | (2) |
|
7.2.5 A glimpse at algebraic geometry |
|
|
201 | (3) |
|
|
204 | (10) |
|
7.3.1 Derivatives and repeated roots |
|
|
204 | (3) |
|
|
207 | (2) |
|
|
209 | (3) |
|
7.3.4 Wedderburn's Theorem |
|
|
212 | (2) |
|
|
214 | (21) |
|
|
214 | (4) |
|
|
218 | (6) |
|
|
224 | (11) |
|
|
235 | (34) |
|
|
235 | (18) |
|
|
235 | (4) |
|
|
239 | (2) |
|
|
241 | (3) |
|
|
244 | (4) |
|
|
248 | (5) |
|
|
253 | (16) |
|
8.2.1 Normality and separability |
|
|
254 | (3) |
|
|
257 | (2) |
|
8.2.3 Solubility by radicals |
|
|
259 | (4) |
|
8.2.4 Ruler-and-compass revisited |
|
|
263 | (2) |
|
8.2.5 The Theorem of the Primitive Element |
|
|
265 | (1) |
|
Appendix: The Fundamental Theorem of Algebra |
|
|
266 | (3) |
Further reading |
|
269 | (2) |
Solutions to selected exercises |
|
271 | (16) |
Index |
|
287 | |