Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Analytic Number Theory

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book has grown out of a course of lectures I have given at the Eidgenossische Technische Hochschule, Zurich. Notes of those lectures, prepared for the most part by assistants, have appeared in German. This book follows the same general plan as those notes, though in style, and in text (for instance, Chapters III, V, VIII), and in attention to detail, it is rather different. Its purpose is to introduce the non-specialist to some of the fundamental results in the theory of numbers, to show how analytical methods of proof fit into the theory, and to prepare the ground for a subsequent inquiry into deeper questions. It is pub­ lished in this series because of the interest evinced by Professor Beno Eckmann. I have to acknowledge my indebtedness to Professor Carl Ludwig Siegel, who has read the book, both in manuscript and in print, and made a number of valuable criticisms and suggestions. Professor Raghavan Narasimhan has helped me, time and again, with illuminating comments. Dr. Harold Diamond has read the proofs, and helped me to remove obscurities. I have to thank them all. K.C.
I The unique factorization theorem.-
1. Primes.-
2. The unique
factorization theorem.-
3. A second proof of Theorem 2.-
4. Greatest
common divisor and least common multiple.-
5. Farey sequences.-
6. The
infinitude of primes.- II Congruences.-
1. Residue classes.-
2. Theorems
of Euler and of Fermat.-
3. The number of solutions of a congruence.- III
Rational approximation of irrationals and Hurwitz's theorem.-
1.
Approximation of irrationals.-
2. Sums of two squares.-
3. Primes of the
form 4k+-.-
4. Hurwitz's theorem.- IV Quadratic residues and the
representation of a number as a sum of four squares.-
1. The Legendre
symbol.-
2. Wilson's theorem and Euler's criterion.-
3. Sums of two
squares.-
4. Sums of four squares.- V The law of quadratic reciprocity.-
1. Quadratic reciprocity.-
2. Reciprocity for generalized Gaussian sums.-
3. Proof of quadratic reciprocity.-
4. Some applications.- VI Arithmetical
functions and lattice points.-
1. Generalities.-
2. The lattice point
function r(n).-
3. The divisor function d(n).-
4. The functions ?(n).-
5. The Mobius functions ?(n).-
6. Euler's function ?(n).- VII Chebyshev's
therorem on the distribution of prime numbers.-
1. The Chebyshev
functions.-
2. Chebyshev's theorem.-
3. Bertrand's postulate.-
4.
Euler's identity.-
5. Some formulae of Mertens.- VIII Weyl's theorems on
uniforms distribution and Kronecker's theorem.-
1. Introduction.-
2.
Uniform distribution in the unit interval.-
3. Uniform distribution modulo
1.-
4. Weyl's theorems.-
5. Kronecker's theorem.- IX Minkowski's theorem
on lattice points in convex sets.-
1. Convex sets.-
2. Minkowski's
theorem.-
3. Applications.- X Dirichlet's theorem on primes in an
arithmetical progression.-
1. Introduction.-
2. Characters.-
3. Sums of
characters, orthogonality relations.-
4. Dirichlet series, Landau's
theorem.-
5. Dirichlet's theorem.- XI The prime number theorem.-
1. The
non-vanishing of ? (1 + it).-
2. The Wiener-Ikehara theorem.-
3. The
prime number theorem.- A list of books.- Notes.