Atjaunināt sīkdatņu piekrišanu

Introduction to Beam Dynamics in High-Energy Electron Storage Rings [Hardback]

  • Formāts: Hardback, 155 pages, height x width: 254x178 mm, weight: 825 g
  • Sērija : IOP Concise Physics
  • Izdošanas datums: 30-Jun-2018
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1681749904
  • ISBN-13: 9781681749907
  • Hardback
  • Cena: 120,97 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 155 pages, height x width: 254x178 mm, weight: 825 g
  • Sērija : IOP Concise Physics
  • Izdošanas datums: 30-Jun-2018
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1681749904
  • ISBN-13: 9781681749907
Electron storage rings play a crucial role in many areas of modern scientific research. In light sources, they provide intense beams of x-rays that can be used to understand the structure and behavior of materials at the atomic scale, with applications to medicine, the life sciences, condensed matter physics, engineering, and technology. In particle colliders, electron storage rings allow experiments that probe the laws of nature at the most fundamental level. Understanding and controlling the behavior of the beams of particles in storage rings is essential for the design, construction, and operation of light sources and colliders aimed at reaching increasingly demanding performance specifications. Introduction to Beam Dynamics in High-Energy Electron Storage Rings describes the physics of particle behavior in these machines. Starting with an outline of the history, uses, and structure of electron storage rings, the book develops the foundations of beam dynamics, covering particle motion in the components used to guide and focus the beams, the effects of synchrotron radiation, and the impact of interactions between the particles in the beams. The aim is to emphasize the physics behind key phenomena, keeping mathematical derivations to a minimum: numerous references are provided for those interested in learning more. The text includes discussion of issues relevant to machine design and operation and concludes with a brief discussion of some more advanced topics, relevant in some special situations, and a glimpse of current research aiming to develop the "ultimate" storage rings.
Preface viii
Acknowledgements x
About the author xi
1 Introduction
1(1)
1.1 A brief history of electron storage rings and their uses
1(6)
1.2 General features and subsystems
7(16)
1.2.1 Magnets
8(2)
1.2.2 Radiofrequency cavities
10(3)
1.2.3 Feedback systems
13(1)
1.2.4 Vacuum systems
14(3)
1.2.5 Diagnostics
17(3)
1.2.6 Control systems
20(1)
1.2.7 Injection systems
20(2)
1.2.8 Personnel protection
22(1)
1.3 Some examples of electron storage rings
23(4)
References
27
2 Linear optics
1(1)
2.1 Co-ordinate system and transfer matrices
1(17)
2.1.1 Drift spaces
4(1)
2.1.2 Dipole magnets
5(3)
2.1.3 Quadrupole magnets
8(3)
2.1.4 Radiofrequency cavities
11(2)
2.1.5 Transfer matrices in three degrees of freedom
13(3)
2.1.6 Fringe fields and edge focusing in dipole magnets
16(2)
2.2 Betatron oscillations
18(6)
2.2.1 Hill's equation and the Courant--Snyder parameters
18(2)
2.2.2 The matched distribution in a periodic lattice
20(2)
2.2.3 Betatron phase advance and the betatron tunes
22(1)
2.2.4 Action--angle variables
23(1)
2.3 Emittance
24(2)
2.4 The closed orbit
26(1)
2.5 Dispersion
27(2)
2.6 Coupling
29(2)
2.7 Momentum compaction factor
31(3)
2.8 Synchrotron oscillations and phase stability
34(2)
References
36
3 Synchrotron radiation
1(1)
3.1 Features of synchrotron radiation
1(6)
3.1.1 Radiation power spectrum
2(2)
3.1.2 Brightness
4(1)
3.1.3 Opening angle of the radiation beam
5(1)
3.1.4 Polarisation
6(1)
3.2 Radiation damping and quantum excitation
7(10)
3.2.1 Damping of synchrotron oscillations
8(2)
3.2.2 Damping of betatron oscillations
10(3)
3.2.3 Quantum excitation
13(4)
3.3 Natural emittance and lattice design
17(1)
3.3.1 FODO lattice
18(2)
3.3.2 Double-bend achromats
20(1)
3.3.3 Theoretical minimum emittance lattice and multi-bend achromats
21(2)
References
23
4 Nonlinear dynamics
1(1)
4.1 Chromaticity
1(5)
4.1.1 Natural chromaticity in a storage ring
2(1)
4.1.2 Correction of chromaticity using sextupole magnets
3(2)
4.1.3 Coupling and nonlinear effects from sextupole magnets
5(1)
4.2 Resonances
6(4)
4.3 Dynamic aperture
10(2)
4.4 Energy acceptance
12(2)
References
14
5 Collective effects
1(1)
5.1 Touschek scattering and space charge
2(3)
5.2 Ion trapping
5(1)
5.3 Wake fields, wake functions, and impedances
6(5)
5.4 Potential-well distortion
11(2)
5.5 Microwave instability
13(2)
5.5.1 Microwave instability in a `cold' beam
15(1)
5.5.2 Energy spread and beam stability: Landau damping
15(2)
5.6 Coupled-bunch instabilities
17(5)
References
22
6 Further topics
1
6.1 Advanced tools for beam dynamics
1(3)
6.2 Some other phenomena
4(8)
6.2.1 Spin dynamics
5(2)
6.2.2 Beam-beam effects
7(3)
6.2.3 Electron-cloud effects
10(2)
6.3 The future: `ultimate' storage rings, and beyond
12
References
15