Atjaunināt sīkdatņu piekrišanu

E-grāmata: An Introduction to Beam Physics

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 4,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN.

An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, highlighting important advances through the eyes of their developers using their original drawings. The book then presents concepts of linear beam optics, transfer matrices, the general equations of motion, and the main techniques used for single- and multi-pass systems. Some advanced nonlinear topics, including the computation of aberrations and a study of resonances, round out the presentation.

1 Beams and Beam Physics
1(30)
1.1 What Is Beam Physics?
1(3)
1.2 Production of Beams
4(6)
1.2.1 Electron Sources
4(4)
1.2.2 Proton Sources
8(1)
1.2.3 Ion Sources
9(1)
1.3 Acceleration of Beams
10(21)
1.3.1 Electrostatic Accelerators
12(3)
1.3.2 Linear Accelerators
15(4)
1.3.3 Circular Accelerators
19(12)
2 Linear Beam Optics
31(18)
2.1 Coordinates and Maps
32(4)
2.2 Glass Optics
36(7)
2.2.1 The Drift
37(1)
2.2.2 The Thin Lens
37(3)
2.2.3 The Thin Mirror
40(1)
2.2.4 Liouville's Theorem for Glass Optics
41(2)
2.3 Special Optical Systems
43(6)
2.3.1 Imaging (Point--to--Point, •et; •et;) Systems
44(1)
2.3.2 Parallel--to-Point (|| •et;) Systems
45(1)
2.3.3 Point--to-Parallel (•et; ||) Systems
46(1)
2.3.4 Parallel--to--Parallel (|| ||) Systems
47(1)
2.3.5 Combination Systems
48(1)
3 Fields, Potentials and Equations of Motion
49(18)
3.1 Fields with Straight Reference Orbit
50(7)
3.1.1 Expansion in Cylindrical Coordinates
50(3)
3.1.2 Quadrupole Fields
53(1)
3.1.3 Sextupole and Higher Multipole Fields
54(1)
3.1.4 s--Dependent Fields
55(2)
3.2 Fields with Planar Reference Orbit
57(3)
3.2.1 The Laplacian in Curvilinear Coordinates
57(1)
3.2.2 The Potential in Curvilinear Coordinates
58(2)
3.3 The Equations of Motion in Curvilinear Coordinates
60(7)
3.3.1 The Coordinate System and the Independent Variable
60(5)
3.3.2 The Equations of Motion
65(2)
4 The Linearization of the Equations of Motion
67(48)
4.1 The Drift
69(1)
4.2 The Quadrupole without Fringe Fields
70(3)
4.2.1 The Electric Quadrupole
70(2)
4.2.2 The Magnetic Quadrupole
72(1)
4.3 Deflectors
73(14)
4.3.1 The Homogeneous Magnetic Dipole
73(3)
4.3.2 Edge Focusing
76(6)
4.3.3 The Inhomogeneous Sector Magnet
82(1)
4.3.4 The Inhomogeneous Electric Deflector
83(4)
4.4 Round Lenses
87(20)
4.4.1 The Electrostatic Round Lens
89(8)
4.4.2 The Magnetic Round Lens
97(10)
4.5 *Aberration Formulas
107(8)
5 Computation and Properties of Maps
115(26)
5.1 Aberrations and Symmetries
115(13)
5.1.1 Horizontal Midplane Symmetry
116(2)
5.1.2 Double Midplane Symmetry
118(1)
5.1.3 Rotational Symmetry
119(4)
5.1.4 Symplectic Symmetry
123(5)
5.2 Differential Algebras
128(6)
5.2.1 The Structure 1D1
129(2)
5.2.2 The Structure nDv
131(2)
5.2.3 Functions on Differential Algebras
133(1)
5.3 The Computation of Transfer Maps
134(3)
5.3.1 An Illustrative Example
134(2)
5.3.2 Generation of Maps Using Numerical Integration
136(1)
5.4 Manipulation of Maps
137(4)
5.4.1 Composition of Maps
137(1)
5.4.2 Inversion of Maps
138(1)
5.4.3 Reversion of Maps
139(2)
6 Linear Phase Space Motion
141(20)
6.1 Phase Space Action
142(2)
6.1.1 Drifts and Lenses
142(1)
6.1.2 Quadrupoles and Dipoles
143(1)
6.2 Polygon--like Phase Space
144(1)
6.3 Elliptic Phase Space
145(10)
6.3.1 The Practical Meaning of α, β and γ
147(2)
6.3.2 The Algebraic Relations among the Twiss Parameters
149(5)
6.3.3 The Differential Relations among the Twiss Parameters
154(1)
6.4 *Edwards-Teng Parametrization
155(6)
6.4.1 The Algebraic Relations with Coupling
157(4)
7 Imaging Devices
161(28)
7.1 The Cathode Ray Tube (CRT)
161(1)
7.2 The Camera and the Microscope
162(2)
7.3 Spectrometers and Spectrographs
164(12)
7.3.1 Aberrations and Correction
170(4)
7.3.2 Energy Loss On--Line Isotope Separators
174(2)
7.4 *Electron Microscopes and Their Correction
176(13)
7.4.1 Aberration Correction in SEM, STEM and TEM
178(5)
7.4.2 Aberration Correction in PEEM and LEEM
183(6)
8 The Periodic Transport
189(18)
8.1 The Transversal Motion
189(9)
8.1.1 The Eigenvalues
189(5)
8.1.2 The Invariant Ellipse
194(4)
8.2 Dispersive Effects
198(7)
8.2.1 The Periodic Solution
198(2)
8.2.2 Chromaticity
200(5)
8.3 A Glimpse at Nonlinear Effects
205(2)
9 Lattice Modules
207(34)
9.1 The FODO Cell
208(18)
9.1.1 The FODO Cell Based Achromat
214(10)
9.1.2 The Dispersion Suppressor
224(2)
9.2 Symmetric Achromats
226(9)
9.2.1 The Double-Bend Achromat
229(1)
9.2.2 The Triple-Bend Achromat
230(1)
9.2.3 The Multiple-Bend Achromat
230(1)
9.2.4 The H Function
231(4)
9.3 Special Purpose Modules
235(6)
9.3.1 The Low Beta Insertion
235(1)
9.3.2 The Chicane Bunch Compressor
236(4)
9.3.3 Other Bunch Compressors
240(1)
10 Synchrotron Motion
241(20)
10.1 RF Fundamentals
241(4)
10.2 The Phase Slip Factor
245(7)
10.3 Longitudinal Dynamics
252(5)
10.4 Transverse Dynamics of RF Cavities
257(4)
11 *Resonances in Repetitive Systems
261(34)
11.1 Integer Resonance
261(3)
11.2 Half--Integer Resonance
264(7)
11.3 Linear Coupling Resonance
271(10)
11.4 Third--Integer Resonance
281(14)
References 295(6)
Index 301
Martin Berz, Kyoko Makino, Weishi Wan