Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Cellular Network Analysis Using Stochastic Geometry

  • Formāts - EPUB+DRM
  • Cena: 41,62 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides an accessible yet rigorous first reference for readers interested in learning how to model and analyze cellular network performance using stochastic geometry. In addition to the canonical downlink and uplink settings, analyses of heterogeneous cellular networks and dense cellular networks are also included. For each of these settings, the focus is on the calculation of coverage probability, which gives the complementary cumulative distribution function (ccdf) of signal-to-interference-and-noise ratio (SINR) and is the complement of the outage probability. Using this, other key performance metrics, such as the area spectral efficiency, are also derived. These metrics are especially useful in understanding the effect of densification on network performance. In order to make this a truly self-contained reference, all the required background material from stochastic geometry is introduced in a coherent and digestible manner.

This Book:

  • Provides an approachable introduction to the analysis of cellular networks and illuminates key system dependencies
  • Features an approach based on stochastic geometry as applied to cellular networks including both downlink and uplink
  • Focuses on the statistical distribution of signal-to-interference-and-noise ratio (SINR) and related metrics

Acknowledgments.- Introduction.- Key Background on Stochastic
Geometry.- Downlink Analysis.- Uplink Analysis.- Heterogeneous
Cellular Network Analysis.- Dense Cellular
Networks.- Extensions.- Bibliography.
Jeffrey G. Andrews, Ph.D, is the Truchard Family Endowed Chair in Engineering and Director of 6G@UT at The University of Texas at Austin. He received a B.S. in Engineering with High Distinction from Harvey Mudd College and a M.S. and Ph.D in Electrical Engineering from Stanford University.  





Abhishek K. Gupta, Ph.D, is an Assistant Professor in the Department of Electrical Engineering at the Indian Institute of Technology Kanpur.  He received a B.Tech.- M.Tech dual degree in Electrical Engineering from IIT Kanpur and a Ph.D in Electrical and Computer Engineering from The University of Texas at Austin.





Ahmad AlAmmouri, PhD, is a Senior Research Engineer with the Samsung Research America in Plano, Texas.  He received his B.Sc. from the University of Jordan, an M.Sc. from King Abdullah University of Science and Technology (KAUST), and a Ph.D from The University of Texas at Austin.





Harpreet S. Dhillon, PhD, is a Professor of Electrical and Computer Engineering at Virginia Tech and the Associate Director of Wireless@VT.  He received a B.Tech. in Electronics and Communication Engineering from IIT Guwahati, an M.S. in Electrical Engineering from Virginia Tech, and a Ph.D in Electrical Engineering from The University of Texas at Austin.