Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction To Coastal Engineering And Management (Third Edition)

(Queen's Univ, Canada)
  • Formāts: 544 pages
  • Sērija : Advanced Series On Ocean Engineering 48
  • Izdošanas datums: 29-May-2020
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811208010
  • Formāts - EPUB+DRM
  • Cena: 45,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 544 pages
  • Sērija : Advanced Series On Ocean Engineering 48
  • Izdošanas datums: 29-May-2020
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811208010

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is based on the author's 50 years of experience as a practicing coastal engineer and 34 years as professor of coastal engineering and management at Queen's University. The book is therefore thoroughly practical in nature, but it also reflects newly relevant issues, such as consequences of failure, impacts of rising sea levels, aging infrastructure, real estate development, and contemporary decision making, design and education. This textbook is useful for undergraduate students, postgraduate students and practicing engineers. It covers waves, structures, sediment movement, coastal management, and contemporary coastal design and decision making. It presents both basic principles and engineering solutions. It discusses the traditional methods of analysis and synthesis (design), but also contemporary design methodologies, such as working with environmental impacts. The second edition expanded greatly on the topics of failure and resilience that surfaced as a result of recent disasters from hurricane surges and tsunamis. It updated the discussion of design and decision making for the 21st century, with many new examples. This third edition develops some of these topics further, but its largest new contribution is the new chapter on climate change. This chapter presents the basics of climate change and then goes on to stress the practical implications of the impacts of climate change, focusing on what is of importance to coastal and fluvial specialists.

Preface to 3rd Edition vii
Preface to 2nd Edition ix
Preface to 1st Edition xi
Notation xxiii
Chapter 1 Introduction
1(20)
1.1 Introduction
1(2)
1.2 Synthesis
3(2)
1.3 Simplification
5(1)
1.4 Systems
5(5)
1.5 Jargon and Terminology
10(1)
1.6 Engineering Time
11(1)
1.7 Handy References
12(1)
1.8 Data Requirements
13(5)
1.9 Coastal Design
18(2)
1.10 Concluding Remarks
20(1)
Chapter 2 Water Waves
21(30)
2.1 Introduction
21(9)
2.1.1 Description of waves
21(2)
2.1.2 Wind and waves
23(2)
2.1.3 Sea and swell
25(3)
2.1.4 Introduction to small amplitude wave theory
28(2)
2.2 Wave Theories
30(2)
2.3 Small Amplitude Wave Theory
32(10)
2.3.1 Wave tables
32(3)
2.3.2 Small amplitude expressions
35(6)
2.3.3 Calculation by computer
41(1)
2.4 Reflected Waves
42(3)
2.5 Wave Measurement
45(5)
2.5.1 Wave direction
45(1)
2.5.2 Equipment
46(3)
2.5.3 Laboratory sensors
49(1)
2.6 Summary
50(1)
Chapter 3 Short-Term Wave Analysis
51(28)
3.1 Introduction
51(3)
3.2 Short-Term Wave Height Distribution
54(5)
3.3 Wave Period Distribution
59(1)
3.4 Time Domain Analysis of a Wave Record
59(5)
3.5 Frequency Domain Analysis of a Wave Record
64(5)
3.6 Parameters Derived from the Wave Spectrum
69(3)
3.7 Uncertainties in Wave Measurements
72(2)
3.8 Common Parametric Expressions for Wave Spectra
74(3)
3.9 Directional Wave Spectra
77(2)
Chapter 4 Long-Term Wave Analysis
79(22)
4.1 Introduction
79(1)
4.2 Statistical Analysis of Grouped Wave Data
80(2)
4.3 Transformation of Coordinate Axes
82(8)
4.3.1 Normal probability distribution
82(4)
4.3.2 Log-normal probability distribution
86(1)
4.3.3 Gumbel distribution
87(1)
4.3.4 Weibull distribution
88(2)
4.4 Extrapolation
90(1)
4.5 Sensitivity to Distribution and Threshold Wave Height
91(1)
4.6 Extreme Value Analysis from Ordered Data
92(4)
4.7 Conclusions about Wave Heights
96(1)
4.8 Other Long-Term Wave Distributions
97(4)
Chapter 5 Wave Generation
101(14)
5.1 Wave Generation
101(1)
5.2 Simple Wave Hindcasting
102(9)
5.2.1 Introduction to parametric methods
102(2)
5.2.2 Wind
104(1)
5.2.3 Jonswap parameters
105(4)
5.2.4 Maximum wave conditions
109(1)
5.2.5 Finite water depth
110(1)
5.3 Hindcast Models
111(1)
5.3.1 Parametric models
111(1)
5.3.2 Wave spectra models
112(1)
5.3.3 More complex hindcasting models
112(1)
5.4 Uncertainty
112(3)
Chapter 6 Wave Transformation and Breaking
115(20)
6.1 Wave Transformation Equations
115(1)
6.2 Wave Shoaling
116(1)
6.3 Wave Refraction
117(7)
6.3.1 The equations
117(2)
6.3.2 Refraction diagrams
119(3)
6.3.3 Snell' slaw
122(1)
6.3.4 Summary
123(1)
6.4 Wave Breaking
124(6)
6.5 Wave Diffraction
130(3)
6.6 Uncertainty
133(2)
Chapter 7 Tides and Water Levels
135(34)
7.1 Introduction
135(1)
7.2 Tides
136(16)
7.2.1 Equilibrium tide (Moon)
137(1)
7.2.2 Equilibrium tide (Sun and Moon)
137(1)
7.2.3 Daily inequality
138(2)
7.2.4 Other effects
140(1)
7.2.5 Tide analysis and prediction
141(1)
7.2.6 Tidal propagation
142(3)
7.2.7 Tidal currents
145(4)
7.2.8 Stratification and density currents
149(2)
7.2.9 Tidal computation
151(1)
7.3 Storm Surge
152(2)
7.4 Barometric Surge
154(1)
7.5 Seiche
155(3)
7.6 Seasonal Fluctuations
158(1)
7.7 Long-Term Water Level Changes
159(10)
7.7.1 Climatic fluctuations
159(1)
7.7.2 Eustatic (Sea) level change
160(1)
7.7.3 Isostatic (Land) rebound and subsidence
161(3)
7.7.4 Global climate change
164(5)
Chapter 8 Rare Extraneous Events
169(18)
8.1 Introduction
169(1)
8.2 Cyclone-Generated Storm Surge
170(6)
8.2.1 Hurricane Katrina at New Orleans
172(4)
8.3 Tsunamis
176(9)
8.3.1 Tsunamis generated by earthquakes
177(4)
8.3.2 Tsunamis generated by landslides
181(4)
8.4 Transformation and Breaking of Long Waves
185(2)
Chapter 9 Design of Structures
187(24)
9.1 Introduction
187(1)
9.2 Basics of Probabilistic Design
188(2)
9.2.1 Introduction
188(1)
9.2.2 Probability of failure
189(1)
9.2.3 Levels of probabilistic design
190(1)
9.3 Level II Demonstration
190(6)
9.3.1 Equations
190(1)
9.3.2 Two probability distributions
191(3)
9.3.3 One single distribution
194(1)
9.3.4 Example calculations
195(1)
9.4 Extension to More Complex Designs
196(1)
9.5 Encounter Probability
197(1)
9.6 Level I Design
198(1)
9.7 Risk and Damage
199(2)
9.8 The Design Wave
201(7)
9.8.1 Wave statistics
201(1)
9.8.2 Equivalence of design wave height and failure probability
202(1)
9.8.3 Offshore design wave height
203(1)
9.8.4 Design wave height for non-breaking waves
204(1)
9.8.5 Design wave height for breaking waves
205(3)
9.8.6 Model study
208(1)
9.9 Water Levels
208(3)
Chapter 10 Breakwaters
211(36)
10.1 Vertical Breakwaters
211(13)
10.1.1 Introduction
211(1)
10.1.2 Forces for non-breaking waves
211(5)
10.1.3 Forces for breaking waves
216(3)
10.1.4 Stability design
219(2)
10.1.5 Geotechnical stability
221(1)
10.1.6 Other design considerations
222(2)
10.2 Design Examples3
224(6)
10.2.1 Vertical breakwater in 12 m of water with a short fetch
224(1)
10.2.2 Vertical breakwater in 12 m of water on an open coast
225(3)
10.2.3 Vertical breakwater in 3 m of water
228(1)
10.2.4 Summary
229(1)
10.3 Rubble Mound Breakwaters
230(10)
10.3.1 Filter characteristics
230(2)
10.3.2 Rock armor
232(3)
10.3.3 Concrete armor
235(1)
10.3.4 Armor unit density
236(1)
10.3.5 Primary armor layer
237(1)
10.3.6 Breakwater crest
238(2)
10.4 Design Examples
240(4)
10.4.1 Breakwater in 12 m of water
240(3)
10.4.2 Breakwater in 3 m of water
243(1)
10.5 Berm Breakwaters
244(3)
Chapter 11 Introduction to Coastal Management
247(34)
11.1 Introduction
247(1)
11.2 Decision Making
247(4)
11.3 The Coast under Pressure
251(2)
11.4 Conforming Use
253(3)
11.5 Conflict and Compatibility
256(2)
11.6 Management Strategies
258(1)
11.7 Coastal Management in Spite of the Odds
259(3)
11.8 Management of Coastal Lands
262(2)
11.9 Management of Coastal Waters
264(5)
11.9.1 Groundwater
264(2)
11.9.2 Waste water
266(2)
11.9.3 Other forms of pollution
268(1)
11.10 Example: Management of the Great Lakes-St. Lawrence Shoreline
269(4)
11.11 Example: Management of Coastal Ecosystems
273(4)
11.12 Concluding Remarks
277(4)
Chapter 12 Coastal Sediment Transport
281(24)
12.1 Introduction
281(1)
12.2 Dynamic Beach Profile
281(4)
12.3 Cross-Shore Transport
285(9)
12.3.1 Dune-Beach Utopia
285(1)
12.3.2 Dune-Beach disturbance
286(4)
12.3.3 Dune-Beach encouragement
290(1)
12.3.4 Soft protection
291(3)
12.4 Alongshore Sediment Transport
294(3)
12.4.1 The process
294(2)
12.4.2 Measurement of littoral transport
296(1)
12.4.3 Computation of littoral transport
296(1)
12.5 Complications
297(4)
12.5.1 Limited amounts of beach material
297(2)
12.5.2 Sediment transport in two directions
299(1)
12.5.3 Short term littoral transport
300(1)
12.6 Cohesive shores
301(4)
Chapter 13 Basic Shore Processes
305(18)
13.1 Introduction
305(1)
13.2 Nearshore Current Patterns
305(2)
13.3 Littoral Materials
307(2)
13.4 The Beach
309(2)
13.4.1 Beach slope
309(1)
13.4.2 Beach profile
309(2)
13.5 Cross Shore Sediment Transport
311(2)
13.6 Alongshore Sediment Transport Rate
313(4)
13.6.1 Alongshore component of wave power
314(1)
13.6.2 CERC expression
315(1)
13.6.3 Kamphuis (1991) expression
315(2)
13.7 Actual Alongshore Sediment Transport Rate
317(1)
13.8 The Littoral Cell
318(2)
13.9 Uncertainty
320(3)
Chapter 14 Coastal Design
323(36)
14.1 Introduction
323(3)
14.2 Model Classification
326(2)
14.2.1 Time-space classification
326(1)
14.2.2 Classification by purpose
327(1)
14.3 Physical Models
328(8)
14.3.1 General
328(2)
14.3.2 Scaling and scale effect
330(5)
14.3.3 Laboratory effect
335(1)
14.3.4 Implications for physical modeling
335(1)
14.4 Numerical Modeling
336(8)
14.4.1 General
336(3)
14.4.2 Simplifications of three-dimensional models
339(2)
14.4.3 One-dimensional models and their extensions
341(1)
14.4.4 Performance of coastal models
342(2)
14.5 Field Measurement and Data Models
344(1)
14.6 Uncertainty
345(1)
14.7 Reducing Uncertainty
346(3)
14.8 Model Interpretation
349(1)
14.9 The Future
350(2)
14.10 Composite Modeling
352(5)
14.11 Summary
357(2)
Chapter 15 One-Dimensional Modeling of Coastal Morphology
359(30)
15.1 Introduction
359(1)
15.2 The 1-D Morphology Equation
359(2)
15.3 Sediment Transport Rate
361(1)
15.3.1 Potential sediment transport rate
361(1)
15.3.2 Actual sediment transport rate
362(1)
15.4 Wave Transformation Computation
362(3)
15.4.1 Wave shoaling, refraction and breaking
362(1)
15.4.2 Wave diffraction
363(2)
15.5 Analytical Computation of Shore Morphology
365(7)
15.5.1 Simplifications and assumptions
365(2)
15.5.2 Complete barrier solution
367(2)
15.5.3 Bypassing barrier solution
369(3)
15.6 Numerical Solutions
372(9)
15.6.1 Basics
372(2)
15.6.2 Implicit finite difference scheme
374(3)
15.6.3 Boundary conditions
377(1)
15.6.4 Beach slope
378(1)
15.6.5 Large shoreline curvatures
379(1)
15.6.6 Summary
380(1)
15.7 Examples of ONELINE
381(4)
15.8 Examples of NLINE
385(4)
Chapter 16 Shore Protection
389(22)
16.1 Introduction
389(2)
16.2 Sediment Movement
391(1)
16.3 Groins
392(4)
16.4 Seawalls
396(3)
16.5 Headlands
399(1)
16.6 Offshore Breakwaters
400(3)
16.7 Artificial Nourishment
403(5)
16.8 Concluding Remarks
408(3)
Chapter 17 Contemporary Concepts
411(20)
17.1 Introduction
411(1)
17.2 Decision Making
412(3)
17.3 Contemporary Coastal System Design
415(1)
17.4 Contemporary Decision Making
416(2)
17.5 Failure, Mitigation and Adaptation
418(2)
17.6 Risk and Minimum Cost
420(3)
17.7 Resilience
423(5)
17.7.1 Introduction of resilience
423(2)
17.7.2 Level 1 --- Design of a resilient PES
425(3)
17.8 Uncertainty
428(3)
Chapter 18 Climate, Climate Change and Climate Change Impacts
431(24)
18.1 Essentials of Climate Change
431(8)
18.2 Two Examples of Climate Change Impacts
439(4)
18.2.1 Increased sea levels
439(2)
18.2.2 Change in ocean circulation
441(2)
18.3 Notes to Finish `Essentials of Climate Change'
443(1)
18.4 From the Past to the Present or from Certainty to Uncertainty
444(3)
18.5 The Future or What Should We Do Now
447(8)
18.5.1 Time frames
447(1)
18.5.2 Urgency and calamity
447(1)
18.5.3 Coastal engineering teaching and research
448(7)
Chapter 19 Problems
455(30)
19.1 Introduction
455(1)
19.2 Water Waves
456(2)
19.3 Short-Term Wave Analysis
458(4)
19.4 Long-Term Wave Analysis
462(2)
19.5 Wave Hindcasting
464(1)
19.6 Wave Transformation
465(2)
19.7 Storm Surge and Extraneous Events
467(1)
19.8 Design
468(4)
19.9 Coastal Management
472(2)
19.10 Sediment Transport and Morphology
474(2)
19.11 Modeling
476(1)
19.12 Shore Protection
477(1)
19.13 Contemporary Decision Making
477(1)
19.14 Comprehensive Problems
478(7)
References 485(14)
Author Index 499(4)
Subject Index 503